AI’s Honeymoon Phase Is Over, So What Comes Next?

Countless discussions about AI’s transformative potential have taken place over the past two years since ChatGPT’s initial release generated so much excitement. Corporate leaders have been eager to use the technology to reduce operational expenses. Perhaps surprising, though, is that for many leaders, the key metric…

Bryan Reimer named to FAA Rulemaking Committee

Bryan Reimer named to FAA Rulemaking Committee

Bryan Reimer, a research scientist at the MIT Center for Transportation and Logistics (CTL), and the founder and co-leader of the Advanced Vehicle Technology Consortium and the Human Factors Evaluator for Automotive Demand Consortium in the MIT AgeLab, has been appointed to the Task Force on Human Factors in Aviation Safety Aviation Rulemaking Committee (HF Task Force ARC). The HF Task Force ARC will provide recommendations to the U.S. Federal Aviation Administration (FAA) on the most significant human factors and the relative contribution of these factors to aviation safety risk.

Reimer, who has worked at MIT since 2003, joins a committee whose operational or academic expertise includes air carrier operations, air traffic control, pilot experience, aeronautical information, aircraft maintenance and mechanics psychology, human-machine integration, and general aviation operations. Their recommendations to the FAA will help ensure safety for passengers, aircraft crews, and cargo for years to come. His appointment follows a year of serving on the Transforming Transportation Advisory Committee (TTAC) for the U.S. Department of Transportation, where he has taken on the role of vice chair on the Artificial Intelligence subcommittee. The TTAC recently released a report to the Secretary of Transportation in response to its charter.

As a mobility and technology futurist working at the intersection of technology, human behavior, and public policy, Reimer brings his expertise in human-machine integration, transportation safety, and AI to the committee. The committee, chartered by congressional mandate through the bipartisan FAA Reauthorization Act of 2024, specifically calls for a portion of the committee to have expertise on human factors but whose experience and training are not primarily in aviation, which Reimer will provide.

MIT CTL creates supply chain innovation and drives it into practice through the three pillars of research, outreach, and education, working with businesses, government, and nongovernmental organizations. As a longtime advocate of collaboration across public and private sectors to ensure consumers’ safety in transportation, Reimer’s particular expertise will help the FAA more broadly consider the human element of aviation safety. Yossi Sheffi, director of MIT CTL, says, “Aviation plays a critical role in the rapid and reliable transportation of goods across vast distances, making it essential for delivering time-sensitive products globally. We must understand the current human factors involved in this process to help ensure smooth operation of this indispensable service amid potential disruptions.”

Reimer recently discussed his research on an episode of The Ojo-Yoshida Report with Phil Koopman, a professor of electrical and computer engineering.

HF Task Force ARC members will serve a two-year term. The first ARC plenary meeting was held Jan. 15-16 in Washington.

Toward sustainable decarbonization of aviation in Latin America

Toward sustainable decarbonization of aviation in Latin America

According to the International Energy Agency, aviation accounts for about 2 percent of global carbon dioxide emissions, and aviation emissions are expected to double by mid-century as demand for domestic and international air travel rises. To sharply reduce emissions in alignment with the Paris Agreement’s long-term goal to keep global warming below 1.5 degrees Celsius, the International Air Transport Association (IATA) has set a goal to achieve net-zero carbon emissions by 2050. Which raises the question: Are there technologically feasible and economically viable strategies to reach that goal within the next 25 years?

To begin to address that question, a team of researchers at the MIT Center for Sustainability Science and Strategy (CS3) and the MIT Laboratory for Aviation and the Environment has spent the past year analyzing aviation decarbonization options in Latin America, where air travel is expected to more than triple by 2050 and thereby double today’s aviation-related emissions in the region.

Chief among those options is the development and deployment of sustainable aviation fuel. Currently produced from low- and zero-carbon sources (feedstock) including municipal waste and non-food crops, and requiring practically no alteration of aircraft systems or refueling infrastructure, sustainable aviation fuel (SAF) has the potential to perform just as well as petroleum-based jet fuel with as low as 20 percent of its carbon footprint.

Focused on Brazil, Chile, Colombia, Ecuador, Mexico and Peru, the researchers assessed SAF feedstock availability, the costs of corresponding SAF pathways, and how SAF deployment would likely impact fuel use, prices, emissions, and aviation demand in each country. They also explored how efficiency improvements and market-based mechanisms could help the region to reach decarbonization targets. The team’s findings appear in a CS3 Special Report.

SAF emissions, costs, and sources

Under an ambitious emissions mitigation scenario designed to cap global warming at 1.5 C and raise the rate of SAF use in Latin America to 65 percent by 2050, the researchers projected aviation emissions to be reduced by about 60 percent in 2050 compared to a scenario in which existing climate policies are not strengthened. To achieve net-zero emissions by 2050, other measures would be required, such as improvements in operational and air traffic efficiencies, airplane fleet renewal, alternative forms of propulsion, and carbon offsets and removals.

As of 2024, jet fuel prices in Latin America are around $0.70 per liter. Based on the current availability of feedstocks, the researchers projected SAF costs within the six countries studied to range from $1.11 to $2.86 per liter. They cautioned that increased fuel prices could affect operating costs of the aviation sector and overall aviation demand unless strategies to manage price increases are implemented.

Under the 1.5 C scenario, the total cumulative capital investments required to build new SAF producing plants between 2025 and 2050 were estimated at $204 billion for the six countries (ranging from $5 billion in Ecuador to $84 billion in Brazil). The researchers identified sugarcane- and corn-based ethanol-to-jet fuel, palm oil- and soybean-based hydro-processed esters and fatty acids as the most promising feedstock sources in the near term for SAF production in Latin America.

“Our findings show that SAF offers a significant decarbonization pathway, which must be combined with an economy-wide emissions mitigation policy that uses market-based mechanisms to offset the remaining emissions,” says Sergey Paltsev, lead author of the report, MIT CS3 deputy director, and senior research scientist at the MIT Energy Initiative.

Recommendations

The researchers concluded the report with recommendations for national policymakers and aviation industry leaders in Latin America.

They stressed that government policy and regulatory mechanisms will be needed to create sufficient conditions to attract SAF investments in the region and make SAF commercially viable as the aviation industry decarbonizes operations. Without appropriate policy frameworks, SAF requirements will affect the cost of air travel. For fuel producers, stable, long-term-oriented policies and regulations will be needed to create robust supply chains, build demand for establishing economies of scale, and develop innovative pathways for producing SAF.

Finally, the research team recommended a region-wide collaboration in designing SAF policies. A unified decarbonization strategy among all countries in the region will help ensure competitiveness, economies of scale, and achievement of long-term carbon emissions-reduction goals.

“Regional feedstock availability and costs make Latin America a potential major player in SAF production,” says Angelo Gurgel, a principal research scientist at MIT CS3 and co-author of the study. “SAF requirements, combined with government support mechanisms, will ensure sustainable decarbonization while enhancing the region’s connectivity and the ability of disadvantaged communities to access air transport.”

Financial support for this study was provided by LATAM Airlines and Airbus.

The multifaceted challenge of powering AI

The multifaceted challenge of powering AI

Artificial intelligence has become vital in business and financial dealings, medical care, technology development, research, and much more. Without realizing it, consumers rely on AI when they stream a video, do online banking, or perform an online search. Behind these capabilities are more than 10,000 data centers globally, each one a huge warehouse containing thousands of computer servers and other infrastructure for storing, managing, and processing data. There are now over 5,000 data centers in the United States, and new ones are being built every day — in the U.S. and worldwide. Often dozens are clustered together right near where people live, attracted by policies that provide tax breaks and other incentives, and by what looks like abundant electricity.

And data centers do consume huge amounts of electricity. U.S. data centers consumed more than 4 percent of the country’s total electricity in 2023, and by 2030 that fraction could rise to 9 percent, according to the Electric Power Research Institute. A single large data center can consume as much electricity as 50,000 homes.

The sudden need for so many data centers presents a massive challenge to the technology and energy industries, government policymakers, and everyday consumers. Research scientists and faculty members at the MIT Energy Initiative (MITEI) are exploring multiple facets of this problem — from sourcing power to grid improvement to analytical tools that increase efficiency, and more. Data centers have quickly become the energy issue of our day.

Unexpected demand brings unexpected solutions

Several companies that use data centers to provide cloud computing and data management services are announcing some surprising steps to deliver all that electricity. Proposals include building their own small nuclear plants near their data centers and even restarting one of the undamaged nuclear reactors at Three Mile Island, which has been shuttered since 2019. (A different reactor at that plant partially melted down in 1979, causing the nation’s worst nuclear power accident.) Already the need to power AI is causing delays in the planned shutdown of some coal-fired power plants and raising prices for residential consumers. Meeting the needs of data centers is not only stressing power grids, but also setting back the transition to clean energy needed to stop climate change.

There are many aspects to the data center problem from a power perspective. Here are some that MIT researchers are focusing on, and why they’re important.

An unprecedented surge in the demand for electricity

“In the past, computing was not a significant user of electricity,” says William H. Green, director of MITEI and the Hoyt C. Hottel Professor in the MIT Department of Chemical Engineering. “Electricity was used for running industrial processes and powering household devices such as air conditioners and lights, and more recently for powering heat pumps and charging electric cars. But now all of a sudden, electricity used for computing in general, and by data centers in particular, is becoming a gigantic new demand that no one anticipated.”

Why the lack of foresight? Usually, demand for electric power increases by roughly half-a-percent per year, and utilities bring in new power generators and make other investments as needed to meet the expected new demand. But the data centers now coming online are creating unprecedented leaps in demand that operators didn’t see coming. In addition, the new demand is constant. It’s critical that a data center provides its services all day, every day. There can be no interruptions in processing large datasets, accessing stored data, and running the cooling equipment needed to keep all the packed-together computers churning away without overheating.

Moreover, even if enough electricity is generated, getting it to where it’s needed may be a problem, explains Deepjyoti Deka, a MITEI research scientist. “A grid is a network-wide operation, and the grid operator may have sufficient generation at another location or even elsewhere in the country, but the wires may not have sufficient capacity to carry the electricity to where it’s wanted.” So transmission capacity must be expanded — and, says Deka, that’s a slow process.

Then there’s the “interconnection queue.” Sometimes, adding either a new user (a “load”) or a new generator to an existing grid can cause instabilities or other problems for everyone else already on the grid. In that situation, bringing a new data center online may be delayed. Enough delays can result in new loads or generators having to stand in line and wait for their turn. Right now, much of the interconnection queue is already filled up with new solar and wind projects. The delay is now about five years. Meeting the demand from newly installed data centers while ensuring that the quality of service elsewhere is not hampered is a problem that needs to be addressed.

Finding clean electricity sources

To further complicate the challenge, many companies — including so-called “hyperscalers” such as Google, Microsoft, and Amazon — have made public commitments to having net-zero carbon emissions within the next 10 years. Many have been making strides toward achieving their clean-energy goals by buying “power purchase agreements.” They sign a contract to buy electricity from, say, a solar or wind facility, sometimes providing funding for the facility to be built. But that approach to accessing clean energy has its limits when faced with the extreme electricity demand of a data center.

Meanwhile, soaring power consumption is delaying coal plant closures in many states. There are simply not enough sources of renewable energy to serve both the hyperscalers and the existing users, including individual consumers. As a result, conventional plants fired by fossil fuels such as coal are needed more than ever.

As the hyperscalers look for sources of clean energy for their data centers, one option could be to build their own wind and solar installations. But such facilities would generate electricity only intermittently. Given the need for uninterrupted power, the data center would have to maintain energy storage units, which are expensive. They could instead rely on natural gas or diesel generators for backup power — but those devices would need to be coupled with equipment to capture the carbon emissions, plus a nearby site for permanently disposing of the captured carbon.

Because of such complications, several of the hyperscalers are turning to nuclear power. As Green notes, “Nuclear energy is well matched to the demand of data centers, because nuclear plants can generate lots of power reliably, without interruption.”

In a much-publicized move in September, Microsoft signed a deal to buy power for 20 years after Constellation Energy reopens one of the undamaged reactors at its now-shuttered nuclear plant at Three Mile Island, the site of the much-publicized nuclear accident in 1979. If approved by regulators, Constellation will bring that reactor online by 2028, with Microsoft buying all of the power it produces. Amazon also reached a deal to purchase power produced by another nuclear plant threatened with closure due to financial troubles. And in early December, Meta released a request for proposals to identify nuclear energy developers to help the company meet their AI needs and their sustainability goals.

Other nuclear news focuses on small modular nuclear reactors (SMRs), factory-built, modular power plants that could be installed near data centers, potentially without the cost overruns and delays often experienced in building large plants. Google recently ordered a fleet of SMRs to generate the power needed by its data centers. The first one will be completed by 2030 and the remainder by 2035.

Some hyperscalers are betting on new technologies. For example, Google is pursuing next-generation geothermal projects, and Microsoft has signed a contract to purchase electricity from a startup’s fusion power plant beginning in 2028 — even though the fusion technology hasn’t yet been demonstrated.

Reducing electricity demand

Other approaches to providing sufficient clean electricity focus on making the data center and the operations it houses more energy efficient so as to perform the same computing tasks using less power. Using faster computer chips and optimizing algorithms that use less energy are already helping to reduce the load, and also the heat generated.

Another idea being tried involves shifting computing tasks to times and places where carbon-free energy is available on the grid. Deka explains: “If a task doesn’t have to be completed immediately, but rather by a certain deadline, can it be delayed or moved to a data center elsewhere in the U.S. or overseas where electricity is more abundant, cheaper, and/or cleaner? This approach is known as ‘carbon-aware computing.’” We’re not yet sure whether every task can be moved or delayed easily, says Deka. “If you think of a generative AI-based task, can it easily be separated into small tasks that can be taken to different parts of the country, solved using clean energy, and then be brought back together? What is the cost of doing this kind of division of tasks?”

That approach is, of course, limited by the problem of the interconnection queue. It’s difficult to access clean energy in another region or state. But efforts are under way to ease the regulatory framework to make sure that critical interconnections can be developed more quickly and easily.

What about the neighbors?

A major concern running through all the options for powering data centers is the impact on residential energy consumers. When a data center comes into a neighborhood, there are not only aesthetic concerns but also more practical worries. Will the local electricity service become less reliable? Where will the new transmission lines be located? And who will pay for the new generators, upgrades to existing equipment, and so on? When new manufacturing facilities or industrial plants go into a neighborhood, the downsides are generally offset by the availability of new jobs. Not so with a data center, which may require just a couple dozen employees.

There are standard rules about how maintenance and upgrade costs are shared and allocated. But the situation is totally changed by the presence of a new data center. As a result, utilities now need to rethink their traditional rate structures so as not to place an undue burden on residents to pay for the infrastructure changes needed to host data centers.

MIT’s contributions

At MIT, researchers are thinking about and exploring a range of options for tackling the problem of providing clean power to data centers. For example, they are investigating architectural designs that will use natural ventilation to facilitate cooling, equipment layouts that will permit better airflow and power distribution, and highly energy-efficient air conditioning systems based on novel materials. They are creating new analytical tools for evaluating the impact of data center deployments on the U.S. power system and for finding the most efficient ways to provide the facilities with clean energy. Other work looks at how to match the output of small nuclear reactors to the needs of a data center, and how to speed up the construction of such reactors.

MIT teams also focus on determining the best sources of backup power and long-duration storage, and on developing decision support systems for locating proposed new data centers, taking into account the availability of electric power and water and also regulatory considerations, and even the potential for using what can be significant waste heat, for example, for heating nearby buildings. Technology development projects include designing faster, more efficient computer chips and more energy-efficient computing algorithms.

In addition to providing leadership and funding for many research projects, MITEI is acting as a convenor, bringing together companies and stakeholders to address this issue. At MITEI’s 2024 Annual Research Conference, a panel of representatives from two hyperscalers and two companies that design and construct data centers together discussed their challenges, possible solutions, and where MIT research could be most beneficial.

As data centers continue to be built, and computing continues to create an unprecedented increase in demand for electricity, Green says, scientists and engineers are in a race to provide the ideas, innovations, and technologies that can meet this need, and at the same time continue to advance the transition to a decarbonized energy system.

Student Program for Innovation in Science and Engineering is a launching pad toward possibility

When you ask MIT students to tell you the story of how they came to Cambridge, you might hear some common themes: a favorite science teacher; an interest in computers that turned into an obsession; a bedroom decorated with NASA posters and glow-in-the-dark stars.

But for a few, the road to MIT starts with an invitation to a special summer program: not a camp with canoes or cabins or campgrounds, but instead one taking place in classrooms and labs with discussions of Arduinos, variable scope and aliasing, and Michaelis-Menten enzyme kinetics. The classroom and labs are in Barbados at the Cave Hill campus of the University of the West Indies, and all the students are gifted Caribbean high schoolers, ages 16-18, who’ve been selected for the extremely competitive Student Program for Innovation in Science and Engineering (SPISE). Their summer will not include much time for leisure or lots of sleep; instead, they’ll be tackling a five-week high-intensity curriculum with courses in university-level calculus, physics, biochemistry, computer programming, electronics and entrepreneurship, including hands-on projects in the last three. For several students currently on campus, SPISE was their gateway to MIT.

“The full story is even bigger,” says Cardinal Warde, MIT professor of electrical engineering and founder of SPISE, who is originally from Barbados in the Caribbean. “Over the past 10 years, exactly 30 of the 245 students in total from the SPISE program have attended MIT as undergrads and/or graduate students.”

While many SPISE alumni have gone on to Harvard University, Stanford University, Caltech, Princeton University, Columbia University, the University of Pennsylvania, and other prestigious schools, the emphasis on science and technology creates a natural pipeline to MIT, whose faculty and instructors volunteered their time and expertise to help Warde design a curriculum that was both challenging and engaging.

Jacob White, the Cecil H. Green Professor in Electrical Engineering, was one of the first of those volunteers. “When Covid forced SPISE to run remotely, Professor Warde felt it was critical to continue having hands-on engineering labs, and sought my help,” White explains. “Kits were cobbled together using EECS-donated microcontroller boards, motors and magnets; Dinah Sah (the SPISE director) got those kits to students spread over half-a-dozen islands.” White, and several of his graduate students, collaborated to write a curriculum that would give the students enough grounding in fundamentals to empower them to create their own designs.

Student Program for Innovation in Science and Engineering is a launching pad toward possibility

Play video

In 2021, students worked from home due to the Covid-19 pandemic. The rigor of SPISE projects, however, remained high, thanks to the curriculum contributions of EECS Professor Jacob White, among others. Here, students show off their maglev projects.
Video: Department of Electrical Engineering and Computer Science

When SPISE returned to in-person education, Steve Leeb, the Emanuel E. Landsman (1958) Professor in the Department of Electrical Engineering and Computer Science (EECS) and a member of the Research Laboratory of Electronics (RLE), was inspired by the challenge of teaching electronics remotely.

“SPISE is exactly the kind of opportunity we’re looking for in the RLE educational outreach programs: bright, enthusiastic young folks who would benefit from new perspectives on science and engineering — a community of folks where we can bring new perspectives, share energy and excitement, and, ideally, make lifelong connections to our academic programs here at MIT. It’s a natural fit that benefits us all,” says Leeb, who, together with his graduate students, adapted the portable “take-home” Electronics FIRST curriculum pioneered at MIT and taught in course 6.2030. “The Electronics FIRST exercises and lectures are designed to connect electronic circuit techniques — digital gates, microcontrollers, and other electronics technologies — that are recognizable as elements of commercial products,” says Leeb. “So the projects naturally engage students in building with components that have a connection to commercial products and product ideas. This flows naturally into a ‘final project’ that the students create in SPISE, a product of their own conception, for example a music synthesizer.”

Crucially, the curriculum isn’t simplified for the high school students. “We adapted the projects to fit the different program length — SPISE is shorter than a full MIT term,” says Leeb. “We did not reduce the rigor or challenge of the activities, and, in fact, have brought new ideas from the SPISE students back to campus to improve 6.2030.”

Departments beyond EECS pitched in to develop SPISE, with major teaching contributions coming from the Department of Physics, where Lecturer Alex Shvonski, Senior Technical Instructor Caleb Bonyun, and Senior Technical Instructor Joshua Wolfe, who also manages the Physics Instructional Resource Lab, collaborated on developing hands-on projects and on the teaching for both Physics I and Calculus I courses. Additional supplies came from the MIT Sea Grant Program, which supplied underwater robots to SPISE for six consecutive years before the Covid-19 pandemic. (In the wake of the pandemic, the program pivoted to focus on embedded systems.)

But the core inspiration for SPISE doesn’t come from an academic department at all. “SPISE was based on a model that’s proven to work: MITES,” explains Ebony Hearn, executive director of the MIT Introduction to Technology, Engineering, and Science. “The program, which offers access and opportunity to intensive courses in science, technology, engineering, and math for talented high school students in every zip code, has helped thousands of students for nearly 50 years gain admission to top universities and pursue successful careers in STEM while being immersed in a community of caring mentors and leaders in the profession.”

The shared DNA of the two programs is no coincidence. Cardinal Warde has been the faculty director of MITES for the past 27 years, and took the lessons of five decades of the transformative pre-college experience into account when envisioning an equivalent program in the Caribbean. Much like MITES, SPISE encourages its participants to develop a sense of belonging in STEM and to picture the possibilities at top schools; over the years, the program has added sessions with admissions officers from MIT, Columbia, Princeton, and U Penn. “SPISE changed my perspective of myself,” says Chenise Harper, a first-year student at MIT who is currently interested in Course 6-5 (Electrical Engineering With Computing). “It gave me the confidence to apply to universities I thought were completely out of my reach.”

Harper’s trajectory is exactly what the designers of the program hoped for. “We have been very successful with the shorter-term goal of increasing the numbers of Caribbean students pursuing advanced degrees in STEM and grooming the next generation of STEM and business leaders in the Region,” says Dinah Sah ’81, director of the program (and wife of Cardinal Warde). “We have SPISE graduates who have, or are currently pursuing, graduate degrees at the top universities around the world, including (but not limited to) MIT, Stanford, Harvard, Princeton, Dartmouth, Yale, Johns Hopkins, Carnegie Mellon, and Oxford, including a Rhodes Scholar. We fully believe that SPISE graduates represent part of the next generation of STEM and business leaders in the Caribbean and that SPISE has played a significant role in their trajectories.”

Notably, the SPISE program also includes an element of entrepreneurship, encouraging students to envision tech-based solutions to problems in their own backyards. Keonna Simon, who hails from St. Vincent and the Grenadines, developed a business pitch with other SPISE participants for an innovative “reverse vending machine.” “In the Caribbean, tourism is a key contributor to the economy, but littering is an issue that detracts from the beauty of our islands and harms our abundant marine life,” explains Simon, now a junior majoring in Course 6-7 (Computer Science and Molecular Biology). “Our project aimed to tackle this by placing reverse vending machines in heavily polluted areas. People could deposit recyclable plastic bottles, and the machine would convert the weight of the plastic into cash rewards on a card, redeemable for discounts at supermarkets.”

One SPISE alum, Quilee Simeon, decided to work on a renewable energy system at SPISE as a way of addressing global warming’s effects on his homeland of St. Lucia. “I chose to work on the renewable energy project, where we designed and built a prototype wind turbine using low-resource materials like PVC pipes. It was exciting because I thought it had real applications to developing island states like ours, where we don’t have an abundance of the manufacturing materials used in larger countries, and we are disproportionately affected by climate change,” says Simeon. “So building cheap and effective renewable energy resources was, in my view, an important problem to tackle.”

As Simeon worked on his prototype turbine and tackled late nights with his new classmates at SPISE, he realized how different the experience was from his prior schooling. For most students, the summer program is a first time away from home — but for all, it is the first exposure to the firehose-like experience of tackling multiple college-level courses with simultaneous assignments and problem sets. “It was honestly a primer to MIT,” says Simeon. “They not only challenged us with rigorous math and science, but also provided guidance on college applications and explained the vast opportunities a STEM degree could unlock. SPISE changed my view of myself as a scholar, though probably in an unexpected way. I thought I was smart before attending SPISE, but I realized how much I didn’t know and how many things were lacking or wrong with the style of education I had grown used to (rote learning, memorization, etc.). SPISE made me realize that being a scholar isn’t just about consuming knowledge — it’s about creating and applying it.”

The difficulty of the SPISE curriculum is a deliberate choice, made to aid students in preparing for higher education, confirms Sah. “When we started SPISE in 2012, [we decided] to focus on teaching the fundamentals in each of the courses … The homework problems and the quizzes would require the application of these fundamentals to solving challenging problems. This is in distinct contrast to rote memorization of facts, which is the method of learning these students had generally been exposed to. So, yes, this was in fact a very deliberate choice, and a critical change that we wanted to bring to these very high-potential students in their approach to learning and thinking.”

MIT’s emphasis on creative, outside-the-box thinking was just the beginning of the culture shocks that awaited SPISE students who made the transition to an American university from the summer program. Many are surprised by the American students’ habit of referring to their professors by first name, which would be considered disrespectful at home. Conversely, small daily interactions in the Northeast can feel remote and chilly to Caribbean students. “Moving from a small island with just around 100,000 people to Harvard was initially jarring,” says Gerard Porter, who participated in SPISE in 2017 before attending Harvard for his undergraduate degree. “In my first year, I was often met with puzzled stares when I greeted strangers in an elevator or students in my dorm whom I did not know personally. I quickly learned that politeness meant something very different in the Northeastern United States compared to the warm Caribbean.”

Other SPISE alumni report experiencing similar chilliness — literally. Quilee Simeon’s first winter in Cambridge was jarring. “I knew about the concept of winter and was told to expect cold weather, but I never actually knew how cold ‘cold’ was until I felt it myself,” says Simeon. “That was terrible!” Ronaldo Lee, a first-year from Jamaica interested in computer science and electrical engineering, found warmth among fellow SPISE alumni here at MIT. “Nothing beats the tropical climate! But honestly, the community at MIT has been amazing. I was surprised by how quickly I felt comfortable, thanks to the incredible people around me. The Black and Caribbean community especially made me feel at home; I’ve met some truly fascinating, driven, and like-minded people who’ve become close friends. One of the biggest surprises was discovering how similar we all are, despite our different cultural backgrounds. Everyone here is incredibly smart and shares a common drive to make the world a better place and pursue exciting STEM projects.”

The common drive to improve the world through STEM is evident in the paths the SPISE alumni have taken.

Gerard Porter, now a graduate student in the Kiessling Group within the Department of Chemistry at MIT, conducts research “focusing on unraveling the biological roles of glycans that cover all cells on Earth. I work on developing chemical tools to study critical regions of the bacterial cell wall that have been relatively unexplored.” Porter hopes that learning more about the molecular mechanisms at play within cell walls will open the doorway to the development of novel antibiotics.

Quilee Simeon has discovered an affinity for computational neuroscience, and is currently developing a computational model of the C. elegans nervous system. “My hope is that this model organism will prove fruitful for computational neuroscience research as it has for biology,” says Simeon, who plans to work in industry after graduation.

Computational biology has also captured the attention of junior Keonna Simon, who is excited to take courses such as 6.8711 (Computational Systems Biology: Deep Learning in the Life Sciences), saying, “This nexus holds a lot of potential for solving complex biological problems through computational methods, and I’m eager to dive deeper into that space!”

Chenise Harper found SPISE’s emphasis on bringing tech entrepreneurship home inspiring. “Living in the Caribbean has stimulated a dream of a future where robots are partners in rebuilding our community after natural disasters,” she says. “There are also so many issues that I would like to one day contribute to, like climate change issues and even cybersecurity. Electrical Engineering with Computing is the kind of major that will allow me to at least touch on the areas I am interested in, and allow me to explore both software and hardware concepts that excite me and will inspire me to develop a concrete way to give back to the community that has lifted me up to where I am now.”

Ronaldo Lee also found his academic home in computer science and electrical engineering, fabricating and characterizing perovskite solar cells in his Undergraduate Research Opportunities Program project and building a small offshore wind turbine for the Collegiate Wind Competition as part of the MIT WIND team. “I’d love to focus on the energy sector, particularly in improving the grid system and integrating renewable energy sources to ensure more reliable access,” says Lee. “I want to help make energy access more sustainable and inclusive, driving development for the region as a whole.”

Lee’s plans are perfectly in line with the long-term goals set by Warde and Sah as they planned SPISE. “Diversifying the economies of the region and raising the standard of living by stimulating more technology-based entrepreneurship will take time,” says Sah. “We are optimistic that our SPISE graduates will, with time, change the world to make it a better place for all, including the Caribbean.”

World Economic Forum unveils blueprint for equitable AI

The World Economic Forum (WEF) has released a blueprint outlining how AI can drive inclusivity in global economic growth and societal progress. However, it also highlights the challenges in ensuring its benefits are equitably distributed across all nations and peoples. Developed in partnership with KPMG, the…

For clean ammonia, MIT engineers propose going underground

For clean ammonia, MIT engineers propose going underground

Ammonia is the most widely produced chemical in the world today, used primarily as a source for nitrogen fertilizer. Its production is also a major source of greenhouse gas emissions — the highest in the whole chemical industry.

Now, a team of researchers at MIT has developed an innovative way of making ammonia without the usual fossil-fuel-powered chemical plants that require high heat and pressure. Instead, they have found a way to use the Earth itself as a geochemical reactor, producing ammonia underground. The processes uses Earth’s naturally occurring heat and pressure, provided free of charge and free of emissions, as well as the reactivity of minerals already present in the ground.

The trick the team devised is to inject water underground, into an area of iron-rich subsurface rock. The water carries with it a source of nitrogen and particles of a metal catalyst, allowing the water to react with the iron to generate clean hydrogen, which in turn reacts with the nitrogen to make ammonia. A second well is then used to pump that ammonia up to the surface.

The process, which has been demonstrated in the lab but not yet in a natural setting, is described today in the journal Joule. The paper’s co-authors are MIT professors of materials science and engineering Iwnetim Abate and Ju Li, graduate student Yifan Gao, and five others at MIT.

“When I first produced ammonia from rock in the lab, I was so excited,” Gao recalls. “I realized this represented an entirely new and never-reported approach to ammonia synthesis.’”

The standard method for making ammonia is called the Haber-Bosch process, which was developed in Germany in the early 20th century to replace natural sources of nitrogen fertilizer such as mined deposits of bat guano, which were becoming depleted. But the Haber-Bosch process is very energy intensive: It requires temperatures of 400 degrees Celsius and pressures of 200 atmospheres, and this means it needs huge installations in order to be efficient. Some areas of the world, such as sub-Saharan Africa and Southeast Asia, have few or no such plants in operation.  As a result, the shortage or extremely high cost of fertilizer in these regions has limited their agricultural production.

The Haber-Bosch process “is good. It works,” Abate says. “Without it, we wouldn’t have been able to feed 2 out of the total 8 billion people in the world right now, he says, referring to the portion of the world’s population whose food is grown with ammonia-based fertilizers. But because of the emissions and energy demands, a better process is needed, he says.

Burning fuel to generate heat is responsible for about 20 percent of the greenhouse gases emitted from plants using the Haber-Bosch process. Making hydrogen accounts for the remaining 80 percent.  But ammonia, the molecule NH3, is made up only of nitrogen and hydrogen. There’s no carbon in the formula, so where do the carbon emissions come from? The standard way of producing the needed hydrogen is by processing methane gas with steam, breaking down the gas into pure hydrogen, which gets used, and carbon dioxide gas that gets released into the air.

Other processes exist for making low- or no-emissions hydrogen, such as by using solar or wind-generated electricity to split water into oxygen and hydrogen, but that process can be expensive. That’s why Abate and his team worked on developing a system to produce what they call geological hydrogen. Some places in the world, including some in Africa, have been found to naturally generate hydrogen underground through chemical reactions between water and iron-rich rocks. These pockets of naturally occurring hydrogen can be mined, just like natural methane reservoirs, but the extent and locations of such deposits are still relatively unexplored.

Abate realized this process could be created or enhanced by pumping water, laced with copper and nickel catalyst particles to speed up the process, into the ground in places where such iron-rich rocks were already present. “We can use the Earth as a factory to produce clean flows of hydrogen,” he says.

He recalls thinking about the problem of the emissions from hydrogen production for ammonia: “The ‘aha!’ moment for me was thinking, how about we link this process of geological hydrogen production with the process of making Haber-Bosch ammonia?”

That would solve the biggest problem of the underground hydrogen production process, which is how to capture and store the gas once it’s produced. Hydrogen is a very tiny molecule — the smallest of them all — and hard to contain. But by implementing the entire Haber-Bosch process underground, the only material that would need to be sent to the surface would be the ammonia itself, which is easy to capture, store, and transport.

The only extra ingredient needed to complete the process was the addition of a source of nitrogen, such as nitrate or nitrogen gas, into the water-catalyst mixture being injected into the ground. Then, as the hydrogen gets released from water molecules after interacting with the iron-rich rocks, it can immediately bond with the nitrogen atoms also carried in the water, with the deep underground environment providing the high temperatures and pressures required by the Haber-Bosch process. A second well near the injection well then pumps the ammonia out and into tanks on the surface.

“We call this geological ammonia,” Abate says, “because we are using subsurface temperature, pressure, chemistry, and geologically existing rocks to produce ammonia directly.”

Whereas transporting hydrogen requires expensive equipment to cool and liquefy it, and virtually no pipelines exist for its transport (except near oil refinery sites), transporting ammonia is easier and cheaper. It’s about one-sixth the cost of transporting hydrogen, and there are already more than 5,000 miles of ammonia pipelines and 10,000 terminals in place in the U.S. alone. What’s more, Abate explains, ammonia, unlike hydrogen, already has a substantial commercial market in place, with production volume projected to grow by two to three times by 2050, as it is used not only for fertilizer but also as feedstock for a wide variety of chemical processes.

For example, ammonia can be burned directly in gas turbines, engines, and industrial furnaces, providing a carbon-free alternative to fossil fuels. It is being explored for maritime shipping and aviation as an alternative fuel, and as a possible space propellant.

Another upside to geological ammonia is that untreated wastewater, including agricultural runoff, which tends to be rich in nitrogen already, could serve as the water source and be treated in the process. “We can tackle the problem of treating wastewater, while also making something of value out of this waste,” Abate says.

Gao adds that this process “involves no direct carbon emissions, presenting a potential pathway to reduce global CO2 emissions by up to 1 percent.” To arrive at this point, he says, the team “overcame numerous challenges and learned from many failed attempts. For example, we tested a wide range of conditions and catalysts before identifying the most effective one.”

The project was seed-funded under a flagship project of MIT’s Climate Grand Challenges program, the Center for the Electrification and Decarbonization of Industry. Professor Yet-Ming Chiang, co-director of the center, says “I don’t think there’s been any previous example of deliberately using the Earth as a chemical reactor. That’s one of the key novel points of this approach.”  Chiang emphasizes that even though it is a geological process, it happens very fast, not on geological timescales. “The reaction is fundamentally over in a matter of hours,” he says. “The reaction is so fast that this answers one of the key questions: Do you have to wait for geological times? And the answer is absolutely no.”

Professor Elsa Olivetti, a mission director of the newly established Climate Project at MIT, says, “The creative thinking by this team is invaluable to MIT’s ability to have impact at scale. Coupling these exciting results with, for example, advanced understanding of the geology surrounding hydrogen accumulations represent the whole-of-Institute efforts the Climate Project aims to support.”

“This is a significant breakthrough for the future of sustainable development,” says Geoffrey Ellis, a geologist at the U.S. Geological Survey, who was not associated with this work. He adds, “While there is clearly more work that needs to be done to validate this at the pilot stage and to get this to the commercial scale, the concept that has been demonstrated is truly transformative.  The approach of engineering a system to optimize the natural process of nitrate reduction by Fe2+ is ingenious and will likely lead to further innovations along these lines.”

The initial work on the process has been done in the laboratory, so the next step will be to prove the process using a real underground site. “We think that kind of experiment can be done within the next one to two years,” Abate says. This could open doors to using a similar approach for other chemical production processes, he adds.

The team has applied for a patent and aims to work towards bringing the process to market.

“Moving forward,” Gao says, “our focus will be on optimizing the process conditions and scaling up tests, with the goal of enabling practical applications for geological ammonia in the near future.”

The research team also included Ming Lei, Bachu Sravan Kumar, Hugh Smith, Seok Hee Han, and Lokesh Sangabattula, all at MIT. Additional funding was provided by the National Science Foundation and was carried out, in part, through the use of MIT.nano facilities.