New research from China is offering an improved method of interpolating the gap between two temporally-distanced video frames – one of the most crucial challenges in the current race towards realism for generative AI video, as well as for video codec compression. In the example video…
The Friday Roundup – Travel Videos & Video Camera Settings
5 Tips for Travel Videos with Aidin Robbins Over the years Aiden Robbins has certainly evolved and matured as a video maker from his humble beginnings as a fledgling video creator. And when I say “fledgling” I really mean it, I think he was about 14…
Robots with Feeling: How Tactile AI Could Transform Human-Robot Relationships
Sentient robots have been a staple of science fiction for decades, raising tantalizing ethical questions and shining light on the technical barriers of creating artificial consciousness. Much of what the tech world has achieved in artificial intelligence (AI) today is thanks to recent advances in deep…
Seven Trends to Expect in AI in 2025
Another year, another investment in artificial intelligence (AI). That has certainly been the case for 2024, but will the same momentum continue for 2025 as many organizations begin to question its ROI? According to most analysts, the answer is an overwhelming yes with global investment expected…
MIT affiliates receive 2025 IEEE honors
The IEEE recently announced the winners of their 2025 prestigious medals, technical awards, and fellowships. Four MIT faculty members, one staff member, and five alumni were recognized.
Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health within the Department of Electrical Engineering and Computer Science (EECS) at MIT, received the IEEE Frances E. Allen Medal for “innovative machine learning algorithms that have led to advances in human language technology and demonstrated impact on the field of medicine.” Barzilay focuses on machine learning algorithms for modeling molecular properties in the context of drug design, with the goal of elucidating disease biochemistry and accelerating the development of new therapeutics. In the field of clinical AI, she focuses on algorithms for early cancer diagnostics. She is also the AI faculty lead within the MIT Abdul Latif Jameel Clinic for Machine Learning in Health and an affiliate of the Computer Science and Artificial Intelligence Laboratory, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research. Barzilay is a member of the National Academy of Engineering, the National Academy of Medicine, and the American Academy of Arts and Sciences. She has earned the MacArthur Fellowship, MIT’s Jamieson Award for excellence in teaching, and the Association for the Advancement of Artificial Intelligence’s $1 million Squirrel AI Award for Artificial Intelligence for the Benefit of Humanity. Barzilay is a fellow of AAAI, ACL, and AIMBE.
James J. Collins, the Termeer Professor of Medical Engineering and Science, professor of biological engineering at MIT, and member of the Harvard-MIT Health Sciences and Technology faculty, earned the 2025 IEEE Medal for Innovations in Healthcare Technology for his work in “synthetic gene circuits and programmable cells, launching the field of synthetic biology, and impacting healthcare applications.” He is a core founding faculty member of the Wyss Institute for Biologically Inspired Engineering at Harvard University and an Institute Member of the Broad Institute of MIT and Harvard. Collins is known as a pioneer in synthetic biology, and currently focuses on employing engineering principles to model, design, and build synthetic gene circuits and programmable cells to create novel classes of diagnostics and therapeutics. His patented technologies have been licensed by over 25 biotech, pharma, and medical device companies, and he has co-founded several companies, including Synlogic, Senti Biosciences, Sherlock Biosciences, Cellarity, and the nonprofit Phare Bio. Collins’ many accolades are the MacArthur “Genius” Award, the Dickson Prize in Medicine, and election to the National Academies of Sciences, Engineering, and Medicine.
Roozbeh Jafari, principal staff member in MIT Lincoln Laboratory’s Biotechnology and Human Systems Division, was elected IEEE Fellow for his “contributions to sensors and systems for digital health paradigms.” Jafari seeks to establish impactful and highly collaborative programs between Lincoln Laboratory, MIT campus, and other U.S. academic entities to promote health and wellness for national security and public health. His research interests are wearable-computer design, sensors, systems, and AI for digital health, most recently focusing on digital twins for precision health. He has published more than 200 refereed papers and served as general chair and technical program committee chair for several flagship conferences focused on wearable computers. Jafari has received a National Science Foundation Faculty Early Career Development (CAREER) Award (2012), the IEEE Real-Time and Embedded Technology and Applications Symposium Best Paper Award (2011), the IEEE Andrew P. Sage Best Transactions Paper Award (2014), and the Association for Computing Machinery Transactions on Embedded Computing Systems Best Paper Award (2019), among other honors.
William Oliver, the Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science and professor of physics at MIT, was elected an IEEE Fellow for his “contributions to superconductive quantum computing technology and its teaching.” Director of the MIT Center for Quantum Engineering and associate director of the MIT Research Laboratory of Electronics, Oliver leads the Engineering Quantum Systems (EQuS) group at MIT. His research focuses on superconducting qubits, their use in small-scale quantum processors, and the development of cryogenic packaging and control electronics. The EQuS group closely collaborates with the Quantum Information and Integrated Nanosystems Group at Lincoln Laboratory, where Oliver was previously a staff member and a Laboratory Fellow from 2017 to 2023. Through MIT xPRO, Oliver created four online professional development courses addressing the fundamentals and practical realities of quantum computing. He is member of the National Quantum Initiative Advisory Committee and has published more than 130 journal articles and seven book chapters. Inventor or co-inventor on more than 10 patents, he is a fellow of the American Association for the Advancement of Science and the American Physical Society; serves on the U.S. Committee for Superconducting Electronics; and is a lead editor for the IEEE Applied Superconductivity Conference.
Daniela Rus, director of the MIT Computer Science and Artificial Intelligence Laboratory, MIT Schwarzman College of Computing deputy dean of research, and the Andrew (1956) and Erna Viterbi Professor within the Department of Electrical Engineering and Computer Science, was awarded the IEEE Edison Medal for “sustained leadership and pioneering contributions in modern robotics.” Rus’ research in robotics, artificial intelligence, and data science focuses primarily on developing the science and engineering of autonomy, where she envisions groups of robots interacting with each other and with people to support humans with cognitive and physical tasks. Rus is a Class of 2002 MacArthur Fellow, a fellow of the Association for Computing Machinery, of the Association for the Advancement of Artificial Intelligence and of IEEE, and a member of the National Academy of Engineers and the American Academy of Arts and Sciences.
Five MIT alumni were also recognized.
Steve Mann PhD ’97, a graduate of the Program in Media Arts and Sciences, received the Masaru Ibuka Consumer Technology Award “for contributions to the advancement of wearable computing and high dynamic range imaging.” He founded the MIT Wearable Computing Project and is currently professor of computer engineering at the University of Toronto as well as an IEEE Fellow.
Thomas Louis Marzetta ’72 PhD ’78, a graduate of the Department of Electrical Engineering and Computer Science, received the Eric E. Sumner Award “for originating the Massive MIMO technology in wireless communications.” Marzetta is a distinguished industry professor at New York University’s (NYU) Tandon School of Engineering and is director of NYU Wireless, an academic research center within the department. He is also an IEEE Life Fellow.
Michael Menzel ’81, a graduate of the Department of Physics, was awarded the Simon Ramo Medal “for development of the James Webb Space Telescope [JWST], first deployed to see the earliest galaxies in the universe,” along with Bill Ochs, JWST project manager at NASA, and Scott Willoughby, vice president and program manager for the JWST program at Northrop Grumman. Menzel is a mission systems engineer at NASA and a member of the American Astronomical Society.
Jose Manuel Fonseca Moura ’73, SM ’73, ScD ’75, a graduate of the Department of Electrical Engineering and Computer Science, received the Haraden Pratt Award “for sustained leadership and outstanding contributions to the IEEE in education, technical activities, awards, and global connections.” Currently, Moura is the Philip L. and Marsha Dowd University Professor at Carnegie Mellon University. He is also a member of the U.S. National Academy of Engineers, fellow of the U.S. National Academy of Inventors, a member of the Portugal Academy of Science, an IEEE Fellow, and a fellow of the American Association for the Advancement of Science.
Marc Raibert PhD ’77, a graduate of the former Department of Psychology, now a part of the Department of Brain and Cognitive Sciences, received the Robotics and Automation Award “for pioneering and leading the field of dynamic legged locomotion.” He is founder of Boston Dynamics, an MIT spinoff and robotics company, and The AI Institute, based in Cambridge, Massachusetts, where he also serves as the executive director. Raibert is an IEEE Member.
Making classical music and math more accessible
Senior Holden Mui appreciates the details in mathematics and music. A well-written orchestral piece and a well-designed competitive math problem both require a certain flair and a well-tuned sense of how to keep an audience’s interest.
“People want fresh, new, non-recycled approaches to math and music,” he says. Mui sees his role as a guide of sorts, someone who can take his ideas for a musical composition or a math problem and share them with audiences in an engaging way. His ideas must make the transition from his mind to the page in as precise a way as possible. Details matter.
A double major in math and music from Lisle, Illinois, Mui believes it’s important to invite people into a creative process that allows a kind of conversation to occur between a piece of music he writes and his audience, for example. Or a math problem and the people who try to solve it. “Part of math’s appeal is its ability to reveal deep truths that may be hidden in simple statements,” he argues, “while contemporary classical music should be available for enjoyment by as many people as possible.”
Mui’s first experience at MIT was as a high school student in 2017. He visited as a member of a high school math competition team attending an event hosted and staged by MIT and Harvard University students. The following year, Mui met other students at math camps and began thinking seriously about what was next.
“I chose math as a major because it’s been a passion of mine since high school. My interest grew through competitions and continued to develop it through research,” he says. “I chose MIT because it boasts one of the most rigorous and accomplished mathematics departments in the country.”
Mui is also a math problem writer for the Harvard-MIT Math Tournament (HMMT) and performs with Ribotones, a club that travels to places like retirement homes or public spaces on the Institute’s campus to play music for free. He cites French composer Maurice Ravel as one of his major musical influences.
Mui studies piano with Timothy McFarland, an artist affiliate at MIT, through the MIT Emerson/Harris Fellowship Program, and previously studied with Kate Nir and Matthew Hagle of the Music Institute of Chicago. He started piano at the age of five and cites French composer Maurice Ravel as one of his major musical influences.
As a music student at MIT, Mui is involved in piano performance, chamber music, collaborative piano, the MIT Symphony Orchestra as a violist, conducting, and composition.
He enjoys the incredible variety available within MIT’s music program. “It offers everything from electronic music to world music studies,” he notes, “and has broadened my understanding and appreciation of music’s diversity.”
Collaborating to create
Throughout his academic career, Mui found himself among like-minded students like former Yale University undergraduate Andrew Wu. Together, Mui and Wu won an Emergent Ventures grant. In this collaboration, Mui wrote the music Wu would play. Wu described his experience with one of Mui’s compositions, “Poetry,” as “demanding serious focus and continued re-readings,” yielding nuances even after repeated listens.
Another of Mui’s compositions, “Landscapes,” was performed by MIT’s Symphony Orchestra in October 2024 and offered audiences opportunities to engage with the ideas he explores in his music.
One of the challenges Mui discovered early is that academic composers sometimes create music audiences might struggle to understand. “People often say that music is a universal language, but one of the most valuable insights I’ve gained at MIT is that music isn’t as universally experienced as one might think,” he says. “There are notable differences, for example, between Western music and world music.”
This, Mui says, broadened his perspective on how to approach music and encouraged him to consider his audience more closely when composing. He treats music as an opportunity to invite people into how he thinks.
Creative ideas, accessible outcomes
Mui understands the value of sharing his skills and ideas with others, crediting the MIT International Science and Technology Initiatives (MISTI) program with offering multiple opportunities for travel and teaching. “I’ve been on three MISTI trips during IAP [Independent Activities Period] to teach mathematics,” he says.
Mui says it’s important to be flexible, dynamic, and adaptable in preparation for a fulfilling professional life. Music and math both demand the development of the kinds of soft skills that can help him succeed as a musician, composer, and mathematician.
“Creating math problems is surprisingly similar to writing music,” he argues. “In both cases, the work needs to be complex enough to be interesting without becoming unapproachable.” For Mui, designing original math problems is “like trying to write down an original melody.”
“To write math problems, you have to have seen a lot of math problems before. To write music, you have to know the literature — Bach, Beethoven, Ravel, Ligeti — as diverse a group of personalities as possible.”
A future in the notes and numbers
Mui points to the professional and personal virtues of exploring different fields. “It allows me to build a more diverse network of people with unique perspectives,” he says. “Professionally, having a range of experiences and viewpoints to draw on is invaluable; the broader my knowledge and network, the more insights I can gain to succeed.”
After graduating, Mui plans to pursue doctoral study in mathematics following the completion of a cryptography internship. “The connections I’ve made at MIT, and will continue to make, are valuable because they’ll be useful regardless of the career I choose,” he says. He wants to continue researching math he finds challenging and rewarding. As with his music, he wants to strike a balance between emotion and innovation.
“I think it’s important not to pull all of one’s eggs in one basket,” he says. “One important figure that comes to mind is Isaac Newton, who split his time among three fields: physics, alchemy, and theology.” Mui’s path forward will inevitably include music and math. Whether crafting compositions or designing math problems, Mui seeks to invite others into a world where notes and numbers converge to create meaning, inspire connection, and transform understanding.
Anthropic and Meta in Defense: The New Frontier of Military AI Applications
Imagine a future where drones operate with incredible precision, battlefield strategies adapt in real-time, and military decisions are powered by AI systems that continuously learn from each mission. This future is no longer a distant possibility. Instead, it is happening now. Artificial Intelligence (AI) has evolved…
How Large Language Models Are Unveiling the Mystery of ‘Blackbox’ AI
AI is becoming a more significant part of our lives every day. But as powerful as it is, many AI systems still work like “black boxes.” They make decisions and predictions, but it’s hard to understand how they reach those conclusions. This can make people hesitant…
OmniOps Secures $8 Million to Accelerate Saudi Arabia’s AI Transformation
OmniOps, a Saudi Arabia-based AI infrastructure technology provider founded in 2024 by entrepreneur Mohammed Altassan, has secured SAR 30 million (approximately $8 million) in funding from GMS Capital Ventures. This anchor investment will fuel OmniOps’ mission to optimize and scale AI workloads while driving sustainable, energy-efficient…