Is this the new playbook for curing rare childhood diseases?

Is this the new playbook for curing rare childhood diseases?

“There is no treatment available for your son. We can’t do anything to help him.”

When Fernando Goldsztein MBA ’03 heard those words, something inside him snapped.

“I refused to accept what the doctors were saying. I transformed my fear into my greatest strength and started fighting.”

Goldsztein’s 12-year-old son Frederico was diagnosed with relapsing medulloblastoma, a life-threatening pediatric brain tumor. Goldsztein’s life — and career plan — changed in an instant. He had to learn to become a different kind of leader altogether.

While Goldsztein never set out to become a founder, the MIT Sloan School of Management taught him the importance of networking, building friendships, and making career connections with peers and faculty from all walks of life. He began using those skills in a new way — boldly reaching out to the top medulloblastoma doctors and scientists at hospitals around the world to ask for help.

“I knew that I had to do something to save Frederico, but also the other estimated 15,000 children diagnosed with the disease around the world each year,” he says.

In 2021, Goldsztein launched The Medulloblastoma Initiative (MBI), a nonprofit organization dedicated to finding a cure using a remarkable new model for funding rare disease research.

In just 18 months, the organization — which is still in startup mode — has raised $11 million in private funding and brought together 14 of the world’s most prestigious labs and hospitals from across North America, Europe, and Brazil.

Two promising trials will launch in the coming months, and three additional trials are in the pipeline and currently awaiting U.S. Food and Drug Administration approval.

All of this in an industry that is notorious for bureaucratic red tape, and where the timeline from an initial lab discovery to a patient receiving a first treatment averages seven to 15 years.

While government research grants typically allocate just 4 cents on the dollar toward pediatric cancer research — pennies doled out across multiple labs pursuing uncoordinated efforts — MBI is laser-focused on pushing 100 percent of their funding toward a singular goal, without any overhead or administrative costs.

“There is no time to lose,” Goldsztein says. “We are making science move faster than it ever has before.”

The MBI blueprint for funding cures for rare diseases is replicable, and likely to disrupt the standard way health care research is funded and carried out by radically shortening the timeline.

From despair to strength

After his initial diagnosis at age 9, Frederico went through a nine-hour brain surgery and came to the United States to receive standard treatment. Goldsztein looked on helplessly as his son received radiation and then nine grueling rounds of chemotherapy.

First pioneered in the 1980s, this standard treatment protocol cures 70 percent of children. Still, it leaves most of them with lifelong side effects like cognitive problems, endocrine issues that stunt growth, and secondary tumors. Frederico was on the wrong side of that statistic. Just three years later, his tumor relapsed.

Goldsztein grimaces as he recalls the prognosis he and his wife heard from the doctors.

“It was unbelievable to me that there had been almost no discoveries in 40 years,” he says.

Ultimately, he found hope and partnership in Roger Packer, the director of the Brain Tumor Institute and the Gilbert Family Neurofibromatosis Institute of Children’s National Hospital. He is also the very doctor who created the standard treatment years before.

Packer explains that finding effective therapies for medulloblastoma was complex for 30 years because it is an umbrella term for 13 types of tumors. Frederico suffers from the most common one, Group 4.

Part of the reason the treatment has not changed is that, until recently, medicine has not advanced enough to detect differences between the different tumor types. Packer explains, “Now with molecular genetic testing and methylation, which is a way to essentially sort tumors, that has changed.”

The problem for Frederico was that very few researchers were working on Group 4, the sub-type of medulloblastoma that is the most common tumor, yet also the one that scientists know the least about.

Goldsztein challenged Packer: “If I can get you the funding, what can your lab do to advance medulloblastoma research quickly?”

An open-source consortium model

Packer advised that they work together to “try something different,” instead of just throwing money at research without any guideposts.

“We set up a consortium of leading institutions around the world doing medulloblastoma research, asked them to change their lab approach to focus on the Group 4 tumor, and assigned each lab a question to answer. We charged them with coming up with therapy — not in seven to 10 years, which is the normal transition from discovery to developing a drug and getting it to a patient, but within a two-year timeline,” he says.

Initially, seven labs signed on. Today, the Cure Group 4 Consortium is made up of 14 partners and reads like a who’s who of medulloblastoma heavy hitters: Children’s National Hospital, SickKids, Hopp Children’s Cancer Center, and Texas Children’s Hospital.

Labs can only join the consortium if they agree to follow some unusual rules. As Goldsztein explains, “To be accepted into this group and receive funding, there are no silos, and there is no duplicated work. Everyone has a piece of the puzzle, and we work together to move fast. That is the magic of our model.”

Inspired by MIT’s open-source methods, researchers must share data freely with one another to accelerate the group’s overall progress. This kind of partnership across labs and borders is unprecedented in a highly competitive sector.

Mariano Gargiulo MBA ’03 met Goldsztein on the first day of their MIT Sloan Fellows MBA program orientation and has been his dear friend ever since. An early-stage donor to MBI and a Houston-based executive in the energy sector, Gargiulo sat down with Goldsztein as he first conceptualized MBI’s operating model.

“Usually, startup business models plot out the next 10-15 years; Fernando’s timeline was only two years, and his benchmarks were in three-month increments.” It was audaciously optimistic, says Gargiulo, but so was the founder.

“When I saw it, I did not doubt that he would achieve his goals. I’m seeing Fernando hit those first targets now and it’s amazing to watch,” Gargiulo says.

Children’s National Hospital endorsed MBI in 2023 and invited Goldsztein to sit on its foundation’s board, adding credibility to the initiative and his ability to fundraise more ambitiously.

According to Packer, in the next few months, the first two MBI protocols will reach patients for the first time: an immunotherapy protocol, which “leverages the body’s immune response to target cancer cells more effectively and safely than traditional therapies,” and a medulloblastoma vaccine, which “adapts similar methodologies used in Covid-19 vaccine development. This approach aims to provide a versatile and mobile treatment that could be distributed globally.”

A matter of when

When Goldsztein is not with his own family in Brazil, fundraising, or managing MBI, he is on Zoom with a network of more than 70 other families with children with relapsed medulloblastoma. “I’m not a doctor and I don’t give out medical advice, but with these trials, we are giving each other hope,” he explains.

Hope and purpose are commodities that Goldsztein has in spades. “I don’t understand the idea of doing business and accumulating assets, but not helping others,” he says. He shared that message with an auditorium of his fellow alumni at his 2023 MIT Sloan Reunion.

Frederico, who defied all odds and lived with the threat of recurrence, recently graduated high school. He is interested in international relations and passionate about photography. “This is about finding a cure for Frederico and for all kids,” Goldsztein says.

When asked how the world would be impacted if MBI found a cure for medulloblastoma, Goldsztein shakes his head.

“We are going to find the cure. It’s not if, it’s a matter of when.”

His next goal is to scale MBI and have it serve as a resource for groups that want to replicate its playbook to solve other childhood diseases.

“I’m never going to stop,” he says.

Kingdoms collide as bacteria and cells form captivating connections

Kingdoms collide as bacteria and cells form captivating connections

In biology textbooks, the endoplasmic reticulum is often portrayed as a distinct, compact organelle near the nucleus, and is commonly known to be responsible for protein trafficking and secretion. In reality, the ER is vast and dynamic, spread throughout the cell and able to establish contact and communication with and between other organelles. These membrane contacts regulate processes as diverse as fat metabolism, sugar metabolism, and immune responses.

Exploring how pathogens manipulate and hijack essential processes to promote their own life cycles can reveal much about fundamental cellular functions and provide insight into viable treatment options for understudied pathogens.

New research from the Lamason Lab in the Department of Biology at MIT recently published in the Journal of Cell Biology has shown that Rickettsia parkeri, a bacterial pathogen that lives freely in the cytosol, can interact in an extensive and stable way with the rough endoplasmic reticulum, forming previously unseen contacts with the organelle.

It’s the first known example of a direct interkingdom contact site between an intracellular bacterial pathogen and a eukaryotic membrane.

The Lamason Lab studies R. parkeri as a model for infection of the more virulent Rickettsia rickettsii. R. rickettsii, carried and transmitted by ticks, causes Rocky Mountain Spotted Fever. Left untreated, the infection can cause symptoms as severe as organ failure and death.

Rickettsia is difficult to study because it is an obligate pathogen, meaning it can only live and reproduce inside living cells, much like a virus. Researchers must get creative to parse out fundamental questions and molecular players in the R. parkeri life cycle, and much remains unclear about how R. parkeri spreads.

Detour to the junction

First author Yamilex Acevedo-Sánchez, a BSG-MSRP-Bio program alum and a graduate student at the time, stumbled across the ER and R. parkeri interactions while trying to observe Rickettsia reaching a cell junction.

The current model for Rickettsia infection involves R. parkeri spreading cell to cell by traveling to the specialized contact sites between cells and being engulfed by the neighboring cell in order to spread. Listeria monocytogenes, which the Lamason Lab also studies, uses actin tails to forcefully propel itself into a neighboring cell. By contrast, R. parkeri can form an actin tail, but loses it before reaching the cell junction. Somehow, R. parkeri is still able to spread to neighboring cells.

After an MIT seminar about the ER’s lesser-known functions, Acevedo-Sánchez developed a cell line to observe whether Rickettsia might be spreading to neighboring cells by hitching a ride on the ER to reach the cell junction.

Instead, she saw an unexpectedly high percentage of R. parkeri surrounded and enveloped by the ER, at a distance of about 55 nanometers. This distance is significant because membrane contacts for interorganelle communication in eukaryotic cells form connections from 10-80 nanometers wide. The researchers ruled out that what they saw was not an immune response, and the sections of the ER interacting with the R. parkeri were still connected to the wider network of the ER.

“I’m of the mind that if you want to learn new biology, just look at cells,” Acevedo-Sánchez says. “Manipulating the organelle that establishes contact with other organelles could be a great way for a pathogen to gain control during infection.” 

The stable connections were unexpected because the ER is constantly breaking and reforming connections, lasting seconds or minutes. It was surprising to see the ER stably associating around the bacteria. As a cytosolic pathogen that exists freely in the cytosol of the cells it infects, it was also unexpected to see R. parkeri surrounded by a membrane at all.

Small margins

Acevedo-Sánchez collaborated with the Center for Nanoscale Systems at Harvard University to view her initial observations at higher resolution using focused ion beam scanning electron microscopy. FIB-SEM involves taking a sample of cells and blasting them with a focused ion beam in order to shave off a section of the block of cells. With each layer, a high-resolution image is taken. The result of this process is a stack of images.

From there, Acevedo-Sánchez marked what different areas of the images were — such as the mitochondria, Rickettsia, or the ER — and a program called ORS Dragonfly, a machine learning program, sorted through the thousand or so images to identify those categories. That information was then used to create 3D models of the samples. 

Acevedo-Sánchez noted that less than 5 percent of R. parkeri formed connections with the ER — but small quantities of certain characteristics are known to be critical for R. parkeri infection. R. parkeri can exist in two states: motile, with an actin tail, and nonmotile, without it. In mutants unable to form actin tails, R. parkeri are unable to progress to adjacent cells — but in nonmutants, the percentage of R. parkeri that have tails starts at about 2 percent in early infection and never exceeds 15 percent at the height of it.

The ER only interacts with nonmotile R. parkeri, and those interactions increased 25-fold in mutants that couldn’t form tails.

Creating connections

Co-authors Acevedo-Sánchez, Patrick Woida, and Caroline Anderson also investigated possible ways the connections with the ER are mediated. VAP proteins, which mediate ER interactions with other organelles, are known to be co-opted by other pathogens during infection.

During infection by R. parkeri, VAP proteins were recruited to the bacteria; when VAP proteins were knocked out, the frequency of interactions between R. parkeri and the ER decreased, indicating R. parkeri may be taking advantage of these cellular mechanisms for its own purposes during infection.

Although Acevedo-Sánchez now works as a senior scientist at AbbVie, the Lamason Lab is continuing the work of exploring the molecular players that may be involved, how these interactions are mediated, and whether the contacts affect the host or bacteria’s life cycle.

Senior author and associate professor of biology Rebecca Lamason noted that these potential interactions are particularly interesting because bacteria and mitochondria are thought to have evolved from a common ancestor. The Lamason Lab has been exploring whether R. parkeri could form the same membrane contacts that mitochondria do, although they haven’t proven that yet. So far, R. parkeri is the only cytosolic pathogen that has been observed behaving this way.

“It’s not just bacteria accidentally bumping into the ER. These interactions are extremely stable. The ER is clearly extensively wrapping around the bacterium, and is still connected to the ER network,” Lamason says. “It seems like it has a purpose — what that purpose is remains a mystery.” 

A platform to expedite clean energy projects

A platform to expedite clean energy projects

Businesses and developers often face a steep learning curve when installing clean energy technologies, such as solar installations and EV chargers. To get a fair deal, they need to navigate a complex bidding process that involves requesting proposals, evaluating bids, and ultimately contracting with a provider.

Now the startup Station A, founded by a pair of MIT alumni and their colleagues, is streamlining the process of deploying clean energy. The company has developed a marketplace for clean energy that helps real estate owners and businesses analyze properties to calculate returns on clean energy projects, create detailed project listings, collect and compare bids, and select a provider.

The platform helps real estate owners and businesses adopt clean energy technologies like solar panels, batteries, and EV chargers at the lowest possible prices, in places with the highest potential to reduce energy costs and emissions.

“We do a lot to make adopting clean energy simple,” explains Manos Saratsis MArch ’15, who co-founded Station A with Kevin Berkemeyer MBA ’14. “Imagine if you were trying to buy a plane ticket and your travel agent only used one carrier. It would be more expensive, and you couldn’t even get to some places. Our customers want to have multiple options and easily learn about the track record of whoever they’re working with.”

Station A has already partnered with some of the largest real estate companies in the country, some with thousands of properties, to reduce the carbon footprint of their buildings. The company is also working with grocery chains, warehouses, and other businesses to accelerate the clean energy transition.

“Our platform uses a lot of AI and machine learning to turn addresses into building footprints and to understand their electricity costs, available incentives, and where they can expect the highest ROI,” says Saratsis, who serves as Station A’s head of product. “This would normally require tens or hundreds of thousands of dollars’ worth of consulting time, and we can do it for next to no money very quickly.”

Building the foundation

As a graduate student in MIT’s Department of Architecture, Saratsis studied environmental design modeling, using data from sources like satellite imagery to understand how communities consume energy and to propose the most impactful potential clean energy solutions. He says classes with professors Christoph Reinhart and Kent Larsen were particularly eye-opening.

“My ability to build a thermal energy model and simulate electricity usage in a building started at MIT,” Saratsis says.

Berkemeyer served as president of the MIT Energy Club while at the MIT Sloan School of Management. He was also a research assistant at the MIT Energy Initiative as part of the Future of Solar report and a teacher’s assistant for course 15.366 (Climate and Energy Ventures). He says classes in entrepreneurship with professor of the practice Bill Aulet and in sustainability with Senior Lecturer Jason Jay were formative. Prior to his studies at MIT, Berkemeyer had extensive experience developing solar and storage projects and selling clean energy products to commercial customers. The eventual co-founders didn’t cross paths at MIT, but they ended up working together at the utility NRG Energy after graduation.

“As co-founders, we saw an opportunity to transform how businesses approach clean energy,” said Berkemeyer, who is now Station A’s CEO. “Station A was born out of a shared belief that data and transparency could unlock the full potential of clean energy technologies for everyone.”

At NRG, the founders built software to help identify decarbonization opportunities for customers without having to send analysts to the sites for in-person audits.

“If they worked with a big grocery chain or a big retailer, we would use proprietary analytics to evaluate that portfolio and come up with recommendations for things like solar projects, energy efficiency, and demand response that would yield positive returns within a year,” Saratsis explains.

The tools were a huge success within the company. In 2018, the pair, along with co-founders Jeremy Lucas and Sam Steyer, decided to spin out the technology into Station A.

The founders started by working with energy companies but soon shifted their focus to real estate owners with huge portfolios and large businesses with long-term leasing contracts. Many customers have hundreds or even thousands of addresses to evaluate. Using just the addresses, Station A can provide detailed financial return estimates for clean energy investments.

In 2020, the company widened its focus from selling access to its analytics to creating a marketplace for clean energy transactions, helping businesses run the competitive bidding process for clean energy projects. After a project is installed, Station A can also evaluate whether it’s achieving its expected performance and track financial returns.

“When I talk to people outside the industry, they’re like, ‘Wait, this doesn’t exist already?’” Saratsis says. “It’s kind of crazy, but the industry is still very nascent, and no one’s been able to figure out a way to run the bidding process transparently and at scale.”

From the campus to the world

Today, about 2,500 clean energy developers are active on Station A’s platform. A number of large real estate investment trusts also use its services, in addition to businesses like HP, Nestle, and Goldman Sachs. If Station A were a developer, Saratsis says it would now rank in the top 10 in terms of annual solar deployments.

The founders credit their time at MIT with helping them scale.

“A lot of these relationships originated within the MIT network, whether through folks we met at Sloan or through engagement with MIT,” Saratsis says. “So much of this business is about reputation, and we’ve established a really good reputation.”

Since its founding, Station A has also been sponsoring classes at the Sustainability Lab at MIT, where Saratsis conducted research as a student. As they work to grow Station A’s offerings, the founders say they use the skills they gained as students every day.

“Everything we do around building analysis is inspired in some ways by the stuff that I did when I was at MIT,” Saratsis says.

“Station A is just getting started,” Berkemeyer says. “Clean energy adoption isn’t just about technology — it’s about making the process seamless and accessible. That’s what drives us every day, and we’re excited to lead this transformation.”

How cities are weathering the climate crisis

How cities are weathering the climate crisis

Several years ago, the residents of a manufactured-home neighborhood in southeast suburban Houston, not far from the Buffalo Bayou, took a major step in dealing with climate problems: They bought the land under their homes. Then they installed better drainage and developed strategies to share expertise and tools for home repairs. The result? The neighborhood made it through Hurricane Harvey in 2017 and a winter freeze in 2021 without major damage.

The neighborhood, known as Pasadena Trails, is part of a U.S. movement toward the Resident Owned Community (ROC) model for manufactured home parks. Many people in manufactured homes — mobile homes — do not own the land under them. But if the residents of a manufactured-home park can form an ROC, they can take action to adapt to climate risks — and ease the threat of eviction. With an ROC, manufactured-home residents can be there to stay.

That speaks to a larger issue: In cities, lower-income residents are often especially vulnerable to natural hazards, such as flooding, extreme heat, and wildfire. But efforts aimed at helping cities as a whole withstand these disasters can lead to interventions that displace already-disadvantaged residents — by turning a low-lying neighborhood into a storm buffer, for instance.

“The global climate crisis has very differential effects on cities, and neighborhoods within cities,” says Lawrence Vale, a professor of urban studies at MIT and co-author of a new book on the subject, “The Equitably Resilient City,” published by the MIT Press and co-authored with Zachary B. Lamb PhD ’18, an assistant professor at the University of California at Berkeley.

In the book, the scholars delve into 12 case studies from around the globe which, they believe, have it both ways: Low- and middle-income communities have driven climate progress through tangible built projects, while also keeping people from being displaced, and indeed helping them participate in local governance and neighborhood decision-making.

“We can either dive into despair about climate issues, or think they’re solvable and ask what it takes to succeed in a more equitable way,” says Vale, who is the Ford Professor of Urban Design and Planning at MIT. “This book is asking how people look at problems more holistically — to show how environmental impacts are integrated with their livelihoods, with feeling they can have security from displacement, and feeling they’re not going to be displaced, with being empowered to share in the governance where they live.”

As Lamb notes, “Pursuing equitable urban climate adaptation requires both changes in the physical built environment of cities and innovations in institutions and governance practices to address deep-seated causes of inequality.”

Twelve projects, four elements

Research for “The Equitably Resilient City” began with exploration of about 200 potential cases, and ultimately focused on 12 projects from around the globe, including the U.S., Brazil, Thailand, and France. Vale and Lamb, coordinating with locally-based research teams, visited these diverse sites and conducted interviews in nine languages.

All 12 projects work on multiple levels at once: They are steps toward environmental progress that also help local communities in civic and economic terms. The book uses the acronym LEGS (“livelihood, environment, governance, and security”) to encapsulate this need to make equitable progress on four different fronts.

“Doing one of those things well is worth recognition, and doing all of them well is exciting,” Vale says. “It’s important to understand not just what these communities did, but how they did it and whose views were involved. These 12 cases are not a random sample. The book looks for people who are partially succeeding at difficult things in difficult circumstances.”

One case study is set in São Paolo, Brazil, where low-income residents of a hilly favela benefitted from new housing in the area on undeveloped land that is less prone to slides. In San Juan, Puerto Rico, residents of low-lying neighborhoods abutting a water channel formed a durable set of community groups to create a fairer solution to flooding: Although the channel needed to be re-widened, the local coalition insisted on limiting displacement, supporting local livelihoods and improving environmental conditions and public space.

“There is a backlash to older practices,” Vale says, referring to the large-scale urban planning and infrastructure projects of the mid-20th century, which often ignored community input. “People saw what happened during the urban renewal era and said, ‘You’re not going to do that to us again.’”

Indeed, one through-line in “The Equitably Resilient City” is that cities, like all places, can be contested political terrain. Often, solid solutions emerge when local groups organize, advocate for new solutions, and eventually gain enough traction to enact them.

“Every one of our examples and cases has probably 15 or 20 years of activity behind it, as well as engagements with a much deeper history,” Vale says. “They’re all rooted in a very often troubled [political] context. And yet these are places that have made progress possible.”

Think locally, adapt anywhere

Another motif of “The Equitably Resilient City” is that local progress matters greatly, for a few reasons — including the value of having communities develop projects that meet their own needs, based on their input. Vale and Lamb are interested in projects even if they are very small-scale, and devote one chapter of the book to the Paris OASIS program, which has developed a series of cleverly designed, heavily tree-dotted school playgrounds across Paris. These projects provide environmental education opportunities and help mitigate flooding and urban heat while adding CO2-harnessing greenery to the cityscape.

An individual park, by itself, can only do so much, but the concept behind it can be adopted by anyone.

“This book is mostly centered on local projects rather than national schemes,” Vale says. “The hope is they serve as an inspiration for people to adapt to their own situations.”

After all, the urban geography and governance of places such as Paris or São Paulo will differ widely. But efforts to make improvements to public open space or to well-located inexpensive housing stock applies in cities across the world.

Similarly, the authors devote a chapter to work in the Cully neighborhood in Portland, Oregon, where community leaders have instituted a raft of urban environmental improvements while creating and preserving more affordable housing. The idea in the Cully area, as in all these cases, is to make places more resistant to climate change while enhancing them as good places to live for those already there.

“Climate adaptation is going to mobilize enormous public and private resources to reshape cities across the globe,” Lamb notes. “These cases suggest pathways where those resources can make cities both more resilient in the face of climate change and more equitable. In fact, these projects show how making cities more equitable can be part of making them more resilient.”

Other scholars have praised the book. Eric Klinenberg, director of New York University’s Institute for Public Knowledge has called it “at once scholarly, constructive, and uplifting, a reminder that better, more just cities remain within our reach.”

Vale also teaches some of the book’s concepts in his classes, finding that MIT students, wherever they are from, enjoy the idea of thinking creatively about climate resilience.

“At MIT, students want to find ways of applying technical skills to urgent global challenges,” Vale says. “I do think there are many opportunities, especially at a time of climate crisis. We try to highlight some of the solutions that are out there. Give us an opportunity, and we’ll show you what a place can be.”

How good old mud can lower building costs

How good old mud can lower building costs

Buildings cost a lot these days. But when concrete buildings are being constructed, there’s another material that can make them less expensive: mud.

MIT researchers have developed a method to use lightly treated mud, including soil from a building site, as the “formwork” molds into which concrete is poured. The technique deploys 3D printing and can replace the more costly method of building elaborate wood formworks for concrete construction.

“What we’ve demonstrated is that we can essentially take the ground we’re standing on, or waste soil from a construction site, and transform it into accurate, highly complex, and flexible formwork for customized concrete structures,” says Sandy Curth, a PhD candidate in MIT’s Department of Architecture who has helped spearhead the project.

The approach could help concrete-based construction take place more quickly and efficiently. It could also reduce costs and carbon emissions.

“It has the potential for immediate impact and doesn’t require changing the nature of the construction industry,” says Curth, who doubles as director of the Programmable Mud Initiative.

Curth has co-authored multiple papers about the method, most recently, “EarthWorks: Zero waste 3D printed earthen formwork for shape-optimized, reinforced concrete construction,” published in the journal Construction and Building Materials. Curth wrote that paper with nine co-authors, including Natalie Pearl, Emily Wissemann, Tim Cousin, Latifa Alkhayat, Vincent Jackow, Keith Lee, and Oliver Moldow, all MIT students; and Mohamed Ismail of the University of Virginia.

The paper’s final two co-authors are Lawrence Sass, professor and chair of the Computation Group in MIT’s Department of Architecture, and Caitlin Mueller, an associate professor at MIT in the Department of Architecture and the Department of Civil and Environmental Engineering. Sass is Curth’s graduate advisor.

Building a structure once, not twice

Constructing wooden formwork for a building is costly and time-consuming. There is saying in the industry that concrete structures have to be built twice — once through the wooden formwork, then again in the concrete poured into the forms.

Using soil for the formwork could change that process. While it might seem like an unusual material compared to the solidity of wooden formwork, soil is firm enough to handle poured concrete. The EarthWorks method, as its known, introduces some additive materials, such as straw, and a wax-like coating for the soil material to prevent any water from draining out of the concrete. Using large-scale 3D printing, the researchers can take soil from a construction site and print it into a custom-designed formwork shape.

“What we’ve done is make a system where we are using what is largely straightforward, large-scale 3D printing technology, and making it highly functional for the material,” Curth says. “We found a way to make formwork that is infinitely recyclable. It’s just dirt.”

Beyond cost and ease of acquiring the materials, the method offers at least two other interrelated advantages. One is environmental: Concrete construction accounts for as much as 8 percent of global carbon emissions, and this approach supports substantial emissions reductions, both through the formwork material itself and the ease of shaping the resulting concrete to only use what is structurally required. Using a method called shape optimization, developed for reinforced concrete in previous research by Ismail and Mueller, it is possible to reduce the carbon emissions of concrete structural frames by more than 50 percent.  

“The EarthWorks technique brings these complex, optimized structures much closer to built reality by offering a low-cost, low-carbon fabrication technique for formwork that can be deployed anywhere in the world,” Mueller says.

“It’s an enabling technology to make reinforced concrete buildings much, much more materially efficient, which has a direct impact on global carbon emissions,” Curth adds.

More generally, the EarthWorks method allows architects and engineers to create customized concrete shapes more easily, due to the flexibility of the formwork material. It is easier to cast concrete in an unusual shape when molding it with soil, not wood.

“What’s cool here is we’re able to make shape-optimized building elements for the same amount of time and energy it would take to make rectilinear building elements,” Curth says.

Group project

As Curth notes, the projects developed by the Programmable Mud group are highly collaborative. He emphasizes the roles played by both Sass, a leader in using computation to help develop low-cost housing, and Mueller, whose work also deploys new computational methods to assess innovative structural ideas in architecture.

“Concrete is a wonderful material when it is used thoughtfully and efficiently, which is inherently connected to how it is shaped,” Mueller says. “However, the minimal forms that emerge from optimization are at odds with conventional construction logics. It is very exciting to advance a technique that subverts this supposed tradeoff, showing that performance-driven complexity can be achieved with low carbon emissions and low cost.”

While finishing his doctorate at MIT, Curth has also founded a firm, FORMA Systems, through which he hopes to take the EarthWorks method into the construction industry. Using this approach does mean builders would need to have a large 3D printer on-site. However, they would also save significantly on materials costs, he says.

Further in the future, Curth envisions a time when the method could be used not just for formworks, but to construct templates for, say, two-story residential building made entirely out of earth. Of course, some parts of the world, including the U.S., extensively use adobe architecture already, but the idea here would be to systematize the production of such homes and make them inexpensive in the process.

In either case, Curth says, as formwork for concrete or by itself, we now have new ways to apply soil to construction.

“People have built with earth for as long as we’ve had buildings, but given contemporary demands for urban concrete buildings, this approach basically decouples cost from complexity,” Curth says. “I guarantee you we can start to make higher-performance buildings for less money.”

The project  was supported by the Sidara Urban Research Seed Fund administered by MIT’s Leventhal Center for Advanced Urbanism.

New START.nano cohort is developing solutions in health, data storage, power, and sustainable energy

New START.nano cohort is developing solutions in health, data storage, power, and sustainable energy

MIT.nano has announced seven new companies to join START.nano, a program aimed at speeding the transition of hard-tech innovation to market. The program supports new ventures through discounted use of MIT.nano’s facilities and access to the MIT innovation ecosystem.

The advancements pursued by the newly engages startups include wearables for health care, green alternatives to fossil fuel-based energy, novel battery technologies, enhancements in data systems, and interconnecting nanofabrication knowledge networks, among others.

“The transition of the grand idea that is imagined in the laboratory to something that a million people can use in their hands is a journey fraught with many challenges,” MIT.nano Director Vladimir Bulović said at the 2024 Nano Summit, where nine START.nano companies presented their work. The program provides resources to ease startups over the first two hurdles — finding stakeholders and building a well-developed prototype.

In addition to access to laboratory tools necessary to advance their technologies, START.nano companies receive advice from MIT.nano expert staff, are connected to MIT.nano Consortium companies, gain a broader exposure at MIT conferences and community events, and are eligible to join the MIT Startup Exchange.

“MIT.nano has allowed us to push our project to the frontiers of sensing by implementing advanced fabrication techniques using their machinery,” said Uroš Kuzmanović, CEO and founder of Biosens8. “START.nano has surrounded us with exciting peers, a strong support system, and a spotlight to present our work. By taking advantage of all that the program has to offer, BioSens8 is moving faster than we could anywhere else.”

Here are the seven new START.nano participants:

Analog Photonics is developing lidar and optical communications technology using silicon photonics.

Biosens8 is engineering novel devices to enable health ownership. Their research focuses on multiplexed wearables for hormones, neurotransmitters, organ health markers, and drug use that will give insight into the body’s health state, opening the door to personalized medicine and proactive, data-driven health decisions.

Casimir, Inc. is working on power-generating nanotechnology that interacts with quantum fields to create a continuous source of power. The team compares their technology to a solar panel that works in the dark or a battery that never needs to be recharged.

Central Spiral focuses on lossless data compression. Their technology allows for the compression of any type of data, including those that are already compressed, reducing data storage and transmission costs, lowering carbon dioxide emissions, and enhancing efficiency.

FabuBlox connects stakeholders across the nanofabrication ecosystem and resolves issues of scattered, unorganized, and isolated fab knowledge. Their cloud-based platform combines a generative process design and simulation interface with GitHub-like repository building capabilities.

Metal Fuels is converting industrial waste aluminum to onsite energy and high-value aluminum/aluminum-oxide powders. Their approach combines existing mature technologies of molten metal purification and water atomization to develop a self-sustaining reactor that produces alumina of higher value than our input scrap aluminum feedstock, while also collecting the hydrogen off-gas.

PolyJoule, Inc. is an energy storage startup working on conductive polymer battery technology. The team’s goal is a grid battery of the future that is ultra-safe, sustainable, long living, and low-cost.

In addition to the seven startups that are actively using MIT.nano, nine other companies have been invited to join the latest START.nano cohort:

  • Acorn Genetics
  • American Boronite Corp.
  • Copernic Catalysts
  • Envoya Bio
  • Helix Carbon
  • Minerali
  • Plaid Semiconductors
  • Quantum Network Technologies
  • Wober Tech

Launched in 2021, START.nano now comprises over 20 companies and eight graduates — ventures that have moved beyond the initial startup stages and some into commercialization. 

Physicists discover — and explain — unexpected magnetism in an atomically thin material

Physicists discover — and explain — unexpected magnetism in an atomically thin material

MIT physicists have created a new ultrathin, two-dimensional material with unusual magnetic properties that initially surprised the researchers before they went on to solve the complicated puzzle behind those properties’ emergence. As a result, the work introduces a new platform for studying how materials behave at the most fundamental level — the world of quantum physics.

Ultrathin materials made of a single layer of atoms have riveted scientists’ attention since the discovery of the first such material — graphene, composed of carbon — about 20 years ago. Among other advances since then, researchers have found that stacking individual sheets of the 2D materials, and sometimes twisting them at a slight angle to each other, can give them new properties, from superconductivity to magnetism. Enter the field of twistronics, which was pioneered at MIT by Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT.

In the current research, reported in the Jan. 7 issue of Nature Physics, the scientists, led by Jarillo-Herrero, worked with three layers of graphene. Each layer was twisted on top of the next at the same angle, creating a helical structure akin to the DNA helix or a hand of three cards that are fanned apart.

“Helicity is a fundamental concept in science, from basic physics to chemistry and molecular biology. With 2D materials, one can create special helical structures, with novel properties which we are just beginning to understand. This work represents a new twist in the field of twistronics, and the community is very excited to see what else we can discover using this helical materials platform!” says Jarillo-Herrero, who is also affiliated with MIT’s Materials Research Laboratory.

Do the twist

Twistronics can lead to new properties in ultrathin materials because arranging sheets of 2D materials in this way results in a unique pattern called a moiré lattice. And a moiré pattern, in turn, has an impact on the behavior of electrons.

“It changes the spectrum of energy levels available to the electrons and can provide the conditions for interesting phenomena to arise,” says Sergio C. de la Barrera, one of three co-first authors of the recent paper. De la Barrera, who conducted the work while a postdoc at MIT, is now an assistant professor at the University of Toronto.

In the current work, the helical structure created by the three graphene layers forms two moiré lattices. One is created by the first two overlapping sheets; the other is formed between the second and third sheets.

The two moiré patterns together form a third moiré, a supermoiré, or “moiré of a moiré,” says Li-Qiao Xia, a graduate student in MIT physics and another of the three co-first authors of the Nature Physics paper. “It’s like a moiré hierarchy.” While the first two moiré patterns are only nanometers, or billionths of a meter, in scale, the supermoiré appears at a scale of hundreds of nanometers superimposed over the other two. You can only see it if you zoom out to get a much wider view of the system.

A major surprise

The physicists expected to observe signatures of this moiré hierarchy. They got a huge surprise, however, when they applied and varied a magnetic field. The system responded with an experimental signature for magnetism, one that arises from the motion of electrons. In fact, this orbital magnetism persisted to -263 degrees Celsius — the highest temperature reported in carbon-based materials to date.

But that magnetism can only occur in a system that lacks a specific symmetry — one that the team’s new material should have had. “So the fact that we saw this was very puzzling. We didn’t really understand what was going on,” says Aviram Uri, an MIT Pappalardo postdoc in physics and the third co-first author of the new paper.

Other authors of the paper include MIT professor of physics Liang Fu; Aaron Sharpe of Sandia National Laboratories; Yves H. Kwan of Princeton University; Ziyan Zhu, David Goldhaber-Gordon, and Trithep Devakul of Stanford University; and Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.

What was happening?

It turns out that the new system did indeed break the symmetry that prohibits the orbital magnetism the team observed, but in a very unusual way. “What happens is that the atoms in this system aren’t very comfortable, so they move in a subtle orchestrated way that we call lattice relaxation,” says Xia. And the new structure formed by that relaxation does indeed break the symmetry locally, on the moiré length scale.

This opens the possibility for the orbital magnetism the team observed. However, if you zoom out to view the system on the supermoiré scale, the symmetry is restored. “The moiré hierarchy turns out to support interesting phenomena at different length scales,” says de la Barrera.

Concludes Uri: “It’s a lot of fun when you solve a riddle and it’s such an elegant solution. We’ve gained new insights into how electrons behave in these complex systems, insights that we couldn’t have had unless our experimental observations forced to think about these things.”

This work was supported by the Army Research Office, the National Science Foundation, the Gordon and Betty Moore Foundation, the Ross M. Brown Family Foundation, an MIT Pappalardo Fellowship, the VATAT Outstanding Postdoctoral Fellowship in Quantum Science and Technology, the JSPS KAKENHI, and a Stanford Science Fellowship.

Toward video generative models of the molecular world

Toward video generative models of the molecular world

As the capabilities of generative AI models have grown, you’ve probably seen how they can transform simple text prompts into hyperrealistic images and even extended video clips.

More recently, generative AI has shown potential in helping chemists and biologists explore static molecules, like proteins and DNA. Models like AlphaFold can predict molecular structures to accelerate drug discovery, and the MIT-assisted “RFdiffusion,” for example, can help design new proteins. One challenge, though, is that molecules are constantly moving and jiggling, which is important to model when constructing new proteins and drugs. Simulating these motions on a computer using physics — a technique known as molecular dynamics — can be very expensive, requiring billions of time steps on supercomputers.

As a step toward simulating these behaviors more efficiently, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and Department of Mathematics researchers have developed a generative model that learns from prior data. The team’s system, called MDGen, can take a frame of a 3D molecule and simulate what will happen next like a video, connect separate stills, and even fill in missing frames. By hitting the “play button” on molecules, the tool could potentially help chemists design new molecules and closely study how well their drug prototypes for cancer and other diseases would interact with the molecular structure it intends to impact.

Co-lead author Bowen Jing SM ’22 says that MDGen is an early proof of concept, but it suggests the beginning of an exciting new research direction. “Early on, generative AI models produced somewhat simple videos, like a person blinking or a dog wagging its tail,” says Jing, a PhD student at CSAIL. “Fast forward a few years, and now we have amazing models like Sora or Veo that can be useful in all sorts of interesting ways. We hope to instill a similar vision for the molecular world, where dynamics trajectories are the videos. For example, you can give the model the first and 10th frame, and it’ll animate what’s in between, or it can remove noise from a molecular video and guess what was hidden.”

The researchers say that MDGen represents a paradigm shift from previous comparable works with generative AI in a way that enables much broader use cases. Previous approaches were “autoregressive,” meaning they relied on the previous still frame to build the next, starting from the very first frame to create a video sequence. In contrast, MDGen generates the frames in parallel with diffusion. This means MDGen can be used to, for example, connect frames at the endpoints, or “upsample” a low frame-rate trajectory in addition to pressing play on the initial frame.

This work was presented in a paper shown at the Conference on Neural Information Processing Systems (NeurIPS) this past December. Last summer, it was awarded for its potential commercial impact at the International Conference on Machine Learning’s ML4LMS Workshop.

Some small steps forward for molecular dynamics

In experiments, Jing and his colleagues found that MDGen’s simulations were similar to running the physical simulations directly, while producing trajectories 10 to 100 times faster.

The team first tested their model’s ability to take in a 3D frame of a molecule and generate the next 100 nanoseconds. Their system pieced together successive 10-nanosecond blocks for these generations to reach that duration. The team found that MDGen was able to compete with the accuracy of a baseline model, while completing the video generation process in roughly a minute — a mere fraction of the three hours that it took the baseline model to simulate the same dynamic.

When given the first and last frame of a one-nanosecond sequence, MDGen also modeled the steps in between. The researchers’ system demonstrated a degree of realism in over 100,000 different predictions: It simulated more likely molecular trajectories than its baselines on clips shorter than 100 nanoseconds. In these tests, MDGen also indicated an ability to generalize on peptides it hadn’t seen before.

MDGen’s capabilities also include simulating frames within frames, “upsampling” the steps between each nanosecond to capture faster molecular phenomena more adequately. It can even ​​“inpaint” structures of molecules, restoring information about them that was removed. These features could eventually be used by researchers to design proteins based on a specification of how different parts of the molecule should move.

Toying around with protein dynamics

Jing and co-lead author Hannes Stärk say that MDGen is an early sign of progress toward generating molecular dynamics more efficiently. Still, they lack the data to make these models immediately impactful in designing drugs or molecules that induce the movements chemists will want to see in a target structure.

The researchers aim to scale MDGen from modeling molecules to predicting how proteins will change over time. “Currently, we’re using toy systems,” says Stärk, also a PhD student at CSAIL. “To enhance MDGen’s predictive capabilities to model proteins, we’ll need to build on the current architecture and data available. We don’t have a YouTube-scale repository for those types of simulations yet, so we’re hoping to develop a separate machine-learning method that can speed up the data collection process for our model.”

For now, MDGen presents an encouraging path forward in modeling molecular changes invisible to the naked eye. Chemists could also use these simulations to delve deeper into the behavior of medicine prototypes for diseases like cancer or tuberculosis.

“Machine learning methods that learn from physical simulation represent a burgeoning new frontier in AI for science,” says Bonnie Berger, MIT Simons Professor of Mathematics, CSAIL principal investigator, and senior author on the paper. “MDGen is a versatile, multipurpose modeling framework that connects these two domains, and we’re very excited to share our early models in this direction.”

“Sampling realistic transition paths between molecular states is a major challenge,” says fellow senior author Tommi Jaakkola, who is the MIT Thomas Siebel Professor of electrical engineering and computer science and the Institute for Data, Systems, and Society, and a CSAIL principal investigator. “This early work shows how we might begin to address such challenges by shifting generative modeling to full simulation runs.”

Researchers across the field of bioinformatics have heralded this system for its ability to simulate molecular transformations. “MDGen models molecular dynamics simulations as a joint distribution of structural embeddings, capturing molecular movements between discrete time steps,” says Chalmers University of Technology associate professor Simon Olsson, who wasn’t involved in the research. “Leveraging a masked learning objective, MDGen enables innovative use cases such as transition path sampling, drawing analogies to inpainting trajectories connecting metastable phases.”

The researchers’ work on MDGen was supported, in part, by the National Institute of General Medical Sciences, the U.S. Department of Energy, the National Science Foundation, the Machine Learning for Pharmaceutical Discovery and Synthesis Consortium, the Abdul Latif Jameel Clinic for Machine Learning in Health, the Defense Threat Reduction Agency, and the Defense Advanced Research Projects Agency.

A new vaccine approach could help combat future coronavirus pandemics

A new vaccine approach could help combat future coronavirus pandemics

A new experimental vaccine developed by researchers at MIT and Caltech could offer protection against emerging variants of SARS-CoV-2, as well as related coronaviruses, known as sarbecoviruses, that could spill over from animals to humans.

In addition to SARS-CoV-2, the virus that causes COVID-19, sarbecoviruses — a subgenus of coronaviruses — include the virus that led to the outbreak of the original SARS in the early 2000s. Sarbecoviruses that currently circulate in bats and other mammals may also hold the potential to spread to humans in the future.

By attaching up to eight different versions of sarbecovirus receptor-binding proteins (RBDs) to nanoparticles, the researchers created a vaccine that generates antibodies that recognize regions of RBDs that tend to remain unchanged across all strains of the viruses. That makes it much more difficult for viruses to evolve to escape vaccine-induced antibodies.

“This work is an example of how bringing together computation and immunological experiments can be fruitful,” says Arup K. Chakraborty, the John M. Deutch Institute Professor at MIT and a member of MIT’s Institute for Medical Engineering and Science and the Ragon Institute of MIT, MGH and Harvard University.

Chakraborty and Pamela Bjorkman, a professor of biology and biological engineering at Caltech, are the senior authors of the study, which appears today in Cell. The paper’s lead authors are Eric Wang PhD ’24, Caltech postdoc Alexander Cohen, and Caltech graduate student Luis Caldera.

Mosaic nanoparticles

The new study builds on a project begun in Bjorkman’s lab, in which she and Cohen created a “mosaic” 60-mer nanoparticle that presents eight different sarbecovirus RBD proteins. The RBD is the part of the viral spike protein that helps the virus get into host cells. It is also the region of the coronavirus spike protein that is usually targeted by antibodies against sarbecoviruses.

RBDs contain some regions that are variable and can easily mutate to escape antibodies. Most of the antibodies generated by mRNA COVID-19 vaccines target those variable regions because they are more easily accessible. That is one reason why mRNA vaccines need to be updated to keep up with the emergence of new strains.

If researchers could create a vaccine that stimulates production of antibodies that target RBD regions that can’t easily change and are shared across viral strains, it could offer broader protection against a variety of sarbecoviruses.

Such a vaccine would have to stimulate B cells that have receptors (which then become antibodies) that target those shared, or “conserved,” regions. When B cells circulating in the body encounter a vaccine or other antigen, their B cell receptors, each of which have two “arms,” are more effectively activated if two copies of the antigen are available for binding to each arm. The conserved regions tend to be less accessible to B cell receptors, so if a nanoparticle vaccine presents just one type of RBD, B cells with receptors that bind to the more accessible variable regions, are most likely to be activated.

To overcome this, the Caltech researchers designed a nanoparticle vaccine that includes 60 copies of RBDs from eight different related sarbecoviruses, which have different variable regions but similar conserved regions. Because eight different RBDs are displayed on each nanoparticle, it’s unlikely that two identical RBDs will end up next to each other. Therefore, when a B cell receptor encounters the nanoparticle immunogen, the B cell is more likely to become activated if its receptor can recognize the conserved regions of the RBD.

“The concept behind the vaccine is that by co-displaying all these different RBDs on the nanoparticle, you are selecting for B cells that recognize the conserved regions that are shared between them,” Cohen says. “As a result, you’re selecting for B cells that are more cross-reactive. Therefore, the antibody response would be more cross-reactive and you could potentially get broader protection.”

In studies conducted in animals, the researchers showed that this vaccine, known as mosaic-8, produced strong antibody responses against diverse strains of SARS-CoV-2 and other sarbecoviruses and protected from challenges by both SARS-CoV-2 and SARS-CoV (original SARS).

Broadly neutralizing antibodies

After these studies were published in 2021 and 2022, the Caltech researchers teamed up with Chakraborty’s lab at MIT to pursue computational strategies that could allow them to identify RBD combinations that would generate even better antibody responses against a wider variety of sarbecoviruses.

Led by Wang, the MIT researchers pursued two different strategies — first, a large-scale computational screen of many possible mutations to the RBD of SARS-CoV-2, and second, an analysis of naturally occurring RBD proteins from zoonotic sarbecoviruses.

For the first approach, the researchers began with the original strain of SARS-CoV-2 and generated sequences of about 800,000 RBD candidates by making substitutions in locations that are known to affect antibody binding to variable portions of the RBD. Then, they screened those candidates for their stability and solubility, to make sure they could withstand attachment to the nanoparticle and injection as a vaccine.

From the remaining candidates, the researchers chose 10 based on how different their variable regions were. They then used these to create mosaic nanoparticles coated with either two or five different RBD proteins (mosaic-2COM and mosaic-5COM).

In their second approach, instead of mutating the RBD sequences, the researchers chose seven naturally occurring RBD proteins, using computational techniques to select RBDs that were different from each other in regions that are variable, but retained their conserved regions. They used these to create another vaccine, mosaic-7COM.

Once the researchers produced the RBD-nanoparticles, they evaluated each one in mice. After each mouse received three doses of one of the vaccines, the researchers analyzed how well the resulting antibodies bound to and neutralized seven variants of SARS-CoV-2 and four other sarbecoviruses. 

They also compared the mosaic nanoparticle vaccines to a nanoparticle with only one type of RBD displayed, and to the original mosaic-8 particle from their 2021, 2022, and 2024 studies. They found that mosaic-2COM and mosaic-5COM outperformed both of those vaccines, and mosaic-7COM showed the best responses of all. Mosaic-7COM elicited antibodies with binding to most of the viruses tested, and these antibodies were also able to prevent the viruses from entering cells.

The researchers saw similar results when they tested the new vaccines in mice that were previously vaccinated with a bivalent mRNA COVID-19 vaccine.

“We wanted to simulate the fact that people have already been infected and/or vaccinated against SARS-CoV-2,” Wang says. “In pre-vaccinated mice, mosaic-7COM is consistently giving the highest binding titers for both SARS-CoV-2 variants and other sarbecoviruses.”

Bjorkman’s lab has received funding from the Coalition for Epidemic Preparedness Innovations to do a clinical trial of the mosaic-8 RBD-nanoparticle. They also hope to move mosaic-7COM, which performed better in the current study, into clinical trials. The researchers plan to work on redesigning the vaccines so that they could be delivered as mRNA, which would make them easier to manufacture.

The research was funded by a National Science Foundation Graduate Research Fellowship, the National Institutes of Health, Wellcome Leap, the Bill and Melinda Gates Foundation, the Coalition for Epidemic Preparedness Innovations, and the Caltech Merkin Institute for Translational Research.

Steven Strang, literary scholar and leader in writing and communication support at MIT, dies at 77

Steven Strang, literary scholar and leader in writing and communication support at MIT, dies at 77

Steven Strang, a writer and literary scholar who founded MIT’s Writing and Communication Center in 1981 and directed it for 40 years, died with family at his side on Dec. 29, 2024. He was 77.

His vision for the center was ambitious. After an MIT working group identified gaps between the students’ technical knowledge and their ability to communicate it — particularly once in positions of leadership — Strang advocated an even broader approach rarely used at other universities. Rather than student-tutors working with peers, Strang hired instructors with doctorates, subject matter expertise, and teaching experience to help train all MIT community members for the current and future careers becoming increasingly reliant on persuasion and the need to communicate with varied audiences.

“He made an indelible mark on the MIT community,” wrote current director Elena Kallestinova in a message to WCC staff soon after Strang’s death. “He was deeply respected as a leader, educator, mentor, and colleague.”

Beginning his professional life as a journalist with the Bangor Daily News, Strang soon shifted to academia, receiving a PhD in English from Brown University and over the decades publishing countless pieces of fiction, poetry, and criticism, in addition to his pedagogical articles on writing and rhetoric. 

But the Writing and Communication Center is his legacy. At his Jan. 11 memorial, longtime MIT lecturer and colleague Thalia Rubio called the WCC “Steve’s creation,” pointing out that it went on to serve many thousands of students and others. Another colleague, Bob Irwin, described in a note Strang’s commitment to making the WCC “a place that offered both friendliness and the highest professional standards of advice and consultation on all communication tasks and issues. Steve himself was conscientious, a respectful director, and a warm and reliable mentor to me and others. I think he was exemplary in his job.”

MIT recognized Strang’s major contributions with a Levitan Teaching Award, an Infinite Mile Award, and an Excellence Award. In nomination letters and testimonials, students and peers alike told of a “tireless commitment,” that “they might not have graduated, or been hired to the job they have today, or gained admittance to graduate school had it not been for the help of The Writing Center.” 

Strang is also remembered for his work founding the MIT Writers Group, which he first offered as a creative writing workshop for Independent Activities Period in 2002. In yet another example of Strang recognizing and meeting a community need, about 70 people from across the Institute showed up that first year.

Strang is survived by a large extended family, including his wife Ayni and her two children, Elly and Marta, whom Strang adopted as his own. Donations in his memory can be made to The Rhode Island Society for the Prevention of Cruelty to Animals.