System Two Security, a cutting-edge cybersecurity startup, has announced a $7 million funding round led by Costanoa Ventures. Runtime Ventures, The Hive, Webb Investment Network, and prominent tech veterans, including Scott McNealy (former CEO of Sun Microsystems), Frederic Kerrest (Co-Founder of Okta), and Ash Devata (CEO…
TealHQ Review: Can This AI Tool Land You Your Dream Job?
Did you know the average job seeker spends 11 hours a week scouring listings, submitting applications, and tailoring resumes? That’s nearly one and a half workdays dedicated to hunting for the perfect role! And it can easily feel overwhelming to manage everything. I recently came across…
MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16
For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.
The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.
In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.
The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.
MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).
Building coalitions of sub-national governments
The ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).
This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.
“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”
ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.
Technology and AI for biodiversity conservation
Data, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.
During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.
As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.
That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”
Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.
Shaping equitable markets
In a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.
Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation.
Previous item
The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks — necessary to create an inclusive and transparent market.
Informing an action plan for Afro-descendant communities
The Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.
At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:
- creating financial tools for conservation and supporting Afro-descendant land rights;
- including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;
- calling for increased representation of Afro-descendant communities in international policy forums;
- capacity-building for local governments; and
- strategies for inclusive growth in green business and energy transition.
These actions aim to promote inclusive and sustainable development for Afro-descendant populations.
“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”
A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16.
Andy Byrne, Co-Founder & CEO of Clari – Interview Series
Andy Byrne brings more than two decades of experience in sales, marketing, business development, and management to his position as CEO of Clari. Prior to Clari, he was part of the founding executive team at Clearwell Systems – Gartner’s highest-ranking e-discovery company – which he helped…
Smaller, Smarter, and Faster: How Mistral AI is Bringing Edge Devices to the Forefront
Edge computing is changing how we process and manage data. Instead of sending all information to cloud servers, data is now handled directly on devices. This is a transformative advancement, especially for industries that depend on real-time responses, like healthcare, automotive, and smart cities. While cloud…
MHRA pilots ‘AI Airlock’ to accelerate healthcare adoption
The Medicines and Healthcare products Regulatory Agency (MHRA) has announced the selection of five healthcare technologies for its ‘AI Airlock’ scheme. AI Airlock aims to refine the process of regulating AI-driven medical devices and help fast-track their safe introduction to the UK’s National Health Service (NHS)…
A new way to create realistic 3D shapes using generative AI
Creating realistic 3D models for applications like virtual reality, filmmaking, and engineering design can be a cumbersome process requiring lots of manual trial and error.
While generative artificial intelligence models for images can streamline artistic processes by enabling creators to produce lifelike 2D images from text prompts, these models are not designed to generate 3D shapes. To bridge the gap, a recently developed technique called Score Distillation leverages 2D image generation models to create 3D shapes, but its output often ends up blurry or cartoonish.
MIT researchers explored the relationships and differences between the algorithms used to generate 2D images and 3D shapes, identifying the root cause of lower-quality 3D models. From there, they crafted a simple fix to Score Distillation, which enables the generation of sharp, high-quality 3D shapes that are closer in quality to the best model-generated 2D images.
Some other methods try to fix this problem by retraining or fine-tuning the generative AI model, which can be expensive and time-consuming.
By contrast, the MIT researchers’ technique achieves 3D shape quality on par with or better than these approaches without additional training or complex postprocessing.
Moreover, by identifying the cause of the problem, the researchers have improved mathematical understanding of Score Distillation and related techniques, enabling future work to further improve performance.
“Now we know where we should be heading, which allows us to find more efficient solutions that are faster and higher-quality,” says Artem Lukoianov, an electrical engineering and computer science (EECS) graduate student who is lead author of a paper on this technique. “In the long run, our work can help facilitate the process to be a co-pilot for designers, making it easier to create more realistic 3D shapes.”
Lukoianov’s co-authors are Haitz Sáez de Ocáriz Borde, a graduate student at Oxford University; Kristjan Greenewald, a research scientist in the MIT-IBM Watson AI Lab; Vitor Campagnolo Guizilini, a scientist at the Toyota Research Institute; Timur Bagautdinov, a research scientist at Meta; and senior authors Vincent Sitzmann, an assistant professor of EECS at MIT who leads the Scene Representation Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and Justin Solomon, an associate professor of EECS and leader of the CSAIL Geometric Data Processing Group. The research will be presented at the Conference on Neural Information Processing Systems.
From 2D images to 3D shapes
Diffusion models, such as DALL-E, are a type of generative AI model that can produce lifelike images from random noise. To train these models, researchers add noise to images and then teach the model to reverse the process and remove the noise. The models use this learned “denoising” process to create images based on a user’s text prompts.
But diffusion models underperform at directly generating realistic 3D shapes because there are not enough 3D data to train them. To get around this problem, researchers developed a technique called Score Distillation Sampling (SDS) in 2022 that uses a pretrained diffusion model to combine 2D images into a 3D representation.
The technique involves starting with a random 3D representation, rendering a 2D view of a desired object from a random camera angle, adding noise to that image, denoising it with a diffusion model, then optimizing the random 3D representation so it matches the denoised image. These steps are repeated until the desired 3D object is generated.
However, 3D shapes produced this way tend to look blurry or oversaturated.
“This has been a bottleneck for a while. We know the underlying model is capable of doing better, but people didn’t know why this is happening with 3D shapes,” Lukoianov says.
The MIT researchers explored the steps of SDS and identified a mismatch between a formula that forms a key part of the process and its counterpart in 2D diffusion models. The formula tells the model how to update the random representation by adding and removing noise, one step at a time, to make it look more like the desired image.
Since part of this formula involves an equation that is too complex to be solved efficiently, SDS replaces it with randomly sampled noise at each step. The MIT researchers found that this noise leads to blurry or cartoonish 3D shapes.
An approximate answer
Instead of trying to solve this cumbersome formula precisely, the researchers tested approximation techniques until they identified the best one. Rather than randomly sampling the noise term, their approximation technique infers the missing term from the current 3D shape rendering.
“By doing this, as the analysis in the paper predicts, it generates 3D shapes that look sharp and realistic,” he says.
In addition, the researchers increased the resolution of the image rendering and adjusted some model parameters to further boost 3D shape quality.
In the end, they were able to use an off-the-shelf, pretrained image diffusion model to create smooth, realistic-looking 3D shapes without the need for costly retraining. The 3D objects are similarly sharp to those produced using other methods that rely on ad hoc solutions.
“Trying to blindly experiment with different parameters, sometimes it works and sometimes it doesn’t, but you don’t know why. We know this is the equation we need to solve. Now, this allows us to think of more efficient ways to solve it,” he says.
Because their method relies on a pretrained diffusion model, it inherits the biases and shortcomings of that model, making it prone to hallucinations and other failures. Improving the underlying diffusion model would enhance their process.
In addition to studying the formula to see how they could solve it more effectively, the researchers are interested in exploring how these insights could improve image editing techniques.
This work is funded, in part, by the Toyota Research Institute, the U.S. National Science Foundation, the Singapore Defense Science and Technology Agency, the U.S. Intelligence Advanced Research Projects Activity, the Amazon Science Hub, IBM, the U.S. Army Research Office, the CSAIL Future of Data program, the Wistron Corporation, and the MIT-IBM Watson AI Laboratory.
The Role of Semantic Layers in Self-Service BI
As organizational data grows, its complexity also increases. These data complexities become a significant challenge for business users. Traditional data management approaches struggle to manage these data complexities, so advanced data management methods are required to process them. This is where semantic layers come in. A…
Claude Feature Enables Customized Writing Styles
Let us start with something we all know – AI responses often sound like they came from AI. Everything might feel a bit too polished, structured, or cliche. That has been one of the biggest hurdles in making AI truly useful for everyday communication. Picture every…