To build a better AI helper, start by modeling the irrational behavior of humans

To build a better AI helper, start by modeling the irrational behavior of humans

To build AI systems that can collaborate effectively with humans, it helps to have a good model of human behavior to start with. But humans tend to behave suboptimally when making decisions.

This irrationality, which is especially difficult to model, often boils down to computational constraints. A human can’t spend decades thinking about the ideal solution to a single problem.

Researchers at MIT and the University of Washington developed a way to model the behavior of an agent, whether human or machine, that accounts for the unknown computational constraints that may hamper the agent’s problem-solving abilities.

Their model can automatically infer an agent’s computational constraints by seeing just a few traces of their previous actions. The result, an agent’s so-called “inference budget,” can be used to predict that agent’s future behavior.

In a new paper, the researchers demonstrate how their method can be used to infer someone’s navigation goals from prior routes and to predict players’ subsequent moves in chess matches. Their technique matches or outperforms another popular method for modeling this type of decision-making.

Ultimately, this work could help scientists teach AI systems how humans behave, which could enable these systems to respond better to their human collaborators. Being able to understand a human’s behavior, and then to infer their goals from that behavior, could make an AI assistant much more useful, says Athul Paul Jacob, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on this technique.

“If we know that a human is about to make a mistake, having seen how they have behaved before, the AI agent could step in and offer a better way to do it. Or the agent could adapt to the weaknesses that its human collaborators have. Being able to model human behavior is an important step toward building an AI agent that can actually help that human,” he says.

Jacob wrote the paper with Abhishek Gupta, assistant professor at the University of Washington, and senior author Jacob Andreas, associate professor in EECS and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL). The research will be presented at the International Conference on Learning Representations.

Modeling behavior

Researchers have been building computational models of human behavior for decades. Many prior approaches try to account for suboptimal decision-making by adding noise to the model. Instead of the agent always choosing the correct option, the model might have that agent make the correct choice 95 percent of the time.

However, these methods can fail to capture the fact that humans do not always behave suboptimally in the same way.

Others at MIT have also studied more effective ways to plan and infer goals in the face of suboptimal decision-making.

To build their model, Jacob and his collaborators drew inspiration from prior studies of chess players. They noticed that players took less time to think before acting when making simple moves and that stronger players tended to spend more time planning than weaker ones in challenging matches.

“At the end of the day, we saw that the depth of the planning, or how long someone thinks about the problem, is a really good proxy of how humans behave,” Jacob says.

They built a framework that could infer an agent’s depth of planning from prior actions and use that information to model the agent’s decision-making process.

The first step in their method involves running an algorithm for a set amount of time to solve the problem being studied. For instance, if they are studying a chess match, they might let the chess-playing algorithm run for a certain number of steps. At the end, the researchers can see the decisions the algorithm made at each step.

Their model compares these decisions to the behaviors of an agent solving the same problem. It will align the agent’s decisions with the algorithm’s decisions and identify the step where the agent stopped planning.

From this, the model can determine the agent’s inference budget, or how long that agent will plan for this problem. It can use the inference budget to predict how that agent would react when solving a similar problem.

An interpretable solution

This method can be very efficient because the researchers can access the full set of decisions made by the problem-solving algorithm without doing any extra work. This framework could also be applied to any problem that can be solved with a particular class of algorithms.

“For me, the most striking thing was the fact that this inference budget is very interpretable. It is saying tougher problems require more planning or being a strong player means planning for longer. When we first set out to do this, we didn’t think that our algorithm would be able to pick up on those behaviors naturally,” Jacob says.

The researchers tested their approach in three different modeling tasks: inferring navigation goals from previous routes, guessing someone’s communicative intent from their verbal cues, and predicting subsequent moves in human-human chess matches.

Their method either matched or outperformed a popular alternative in each experiment. Moreover, the researchers saw that their model of human behavior matched up well with measures of player skill (in chess matches) and task difficulty.

Moving forward, the researchers want to use this approach to model the planning process in other domains, such as reinforcement learning (a trial-and-error method commonly used in robotics). In the long run, they intend to keep building on this work toward the larger goal of developing more effective AI collaborators.

This work was supported, in part, by the MIT Schwarzman College of Computing Artificial Intelligence for Augmentation and Productivity program and the National Science Foundation.

10 Best AI Business Plan Generators (April 2024)

In today’s fast-paced business world, having a well-crafted business plan is essential for securing funding, guiding decision-making, and charting a course for success. However, creating a comprehensive and persuasive business plan can be a daunting task, especially for entrepreneurs and small business owners who may not…

InstaHeadshots Review: The Most Realistic AI Headshots?

Having a good corporate headshot can be a make-or-break for business professionals. It affects the credibility of your brand on LinkedIn and your professional image on your website, impacting whether or not you land the job, get the client, etc. But not everyone has the time,…

Using deep learning to image the Earth’s planetary boundary layer

Using deep learning to image the Earth’s planetary boundary layer

Although the troposphere is often thought of as the closest layer of the atmosphere to the Earth’s surface, the planetary boundary layer (PBL) — the lowest layer of the troposphere — is actually the part that most significantly influences weather near the surface. In the 2018 planetary science decadal survey, the PBL was raised as an important scientific issue that has the potential to enhance storm forecasting and improve climate projections.  

“The PBL is where the surface interacts with the atmosphere, including exchanges of moisture and heat that help lead to severe weather and a changing climate,” says Adam Milstein, a technical staff member in Lincoln Laboratory’s Applied Space Systems Group. “The PBL is also where humans live, and the turbulent movement of aerosols throughout the PBL is important for air quality that influences human health.” 

Although vital for studying weather and climate, important features of the PBL, such as its height, are difficult to resolve with current technology. In the past four years, Lincoln Laboratory staff have been studying the PBL, focusing on two different tasks: using machine learning to make 3D-scanned profiles of the atmosphere, and resolving the vertical structure of the atmosphere more clearly in order to better predict droughts.  

This PBL-focused research effort builds on more than a decade of related work on fast, operational neural network algorithms developed by Lincoln Laboratory for NASA missions. These missions include the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission as well as Aqua, a satellite that collects data about Earth’s water cycle and observes variables such as ocean temperature, precipitation, and water vapor in the atmosphere. These algorithms retrieve temperature and humidity from the satellite instrument data and have been shown to significantly improve the accuracy and usable global coverage of the observations over previous approaches. For TROPICS, the algorithms help retrieve data that are used to characterize a storm’s rapidly evolving structures in near-real time, and for Aqua, it has helped increase forecasting models, drought monitoring, and fire prediction. 

These operational algorithms for TROPICS and Aqua are based on classic “shallow” neural networks to maximize speed and simplicity, creating a one-dimensional vertical profile for each spectral measurement collected by the instrument over each location. While this approach has improved observations of the atmosphere down to the surface overall, including the PBL, laboratory staff determined that newer “deep” learning techniques that treat the atmosphere over a region of interest as a three-dimensional image are needed to improve PBL details further.

“We hypothesized that deep learning and artificial intelligence (AI) techniques could improve on current approaches by incorporating a better statistical representation of 3D temperature and humidity imagery of the atmosphere into the solutions,” Milstein says. “But it took a while to figure out how to create the best dataset — a mix of real and simulated data; we needed to prepare to train these techniques.”

The team collaborated with Joseph Santanello of the NASA Goddard Space Flight Center and William Blackwell, also of the Applied Space Systems Group, in a recent NASA-funded effort showing that these retrieval algorithms can improve PBL detail, including more accurate determination of the PBL height than the previous state of the art. 

While improved knowledge of the PBL is broadly useful for increasing understanding of climate and weather, one key application is prediction of droughts. According to a Global Drought Snapshot report released last year, droughts are a pressing planetary issue that the global community needs to address. Lack of humidity near the surface, specifically at the level of the PBL, is the leading indicator of drought. While previous studies using remote-sensing techniques have examined the humidity of soil to determine drought risk, studying the atmosphere can help predict when droughts will happen.  

In an effort funded by Lincoln Laboratory’s Climate Change Initiative, Milstein, along with laboratory staff member Michael Pieper, are working with scientists at NASA’s Jet Propulsion Laboratory (JPL) to use neural network techniques to improve drought prediction over the continental United States. While the work builds off of existing operational work JPL has done incorporating (in part) the laboratory’s operational “shallow” neural network approach for Aqua, the team believes that this work and the PBL-focused deep learning research work can be combined to further improve the accuracy of drought prediction. 

“Lincoln Laboratory has been working with NASA for more than a decade on neural network algorithms for estimating temperature and humidity in the atmosphere from space-borne infrared and microwave instruments, including those on the Aqua spacecraft,” Milstein says. “Over that time, we have learned a lot about this problem by working with the science community, including learning about what scientific challenges remain. Our long experience working on this type of remote sensing with NASA scientists, as well as our experience with using neural network techniques, gave us a unique perspective.”

According to Milstein, the next step for this project is to compare the deep learning results to datasets from the National Oceanic and Atmospheric Administration, NASA, and the Department of Energy collected directly in the PBL using radiosondes, a type of instrument flown on a weather balloon. “These direct measurements can be considered a kind of ‘ground truth’ to quantify the accuracy of the techniques we have developed,” Milstein says.

This improved neural network approach holds promise to demonstrate drought prediction that can exceed the capabilities of existing indicators, Milstein says, and to be a tool that scientists can rely on for decades to come.

The rise of deepfake scams: How AI is being used to steal millions – CyberTalk

The rise of deepfake scams: How AI is being used to steal millions – CyberTalk

By Edwin Doyle, Global Cyber Security Strategist.

In a world increasingly reliant on artificial intelligence, a new threat has emerged: deepfake scams. These scams utilize AI-generated audio and video to impersonate individuals, leading to sophisticated and convincing fraud. Recently, in a first-of-its-kind incident, a deepfake scammer walked off with a staggering $25 million, highlighting the urgent need for awareness and vigilance in the face of this emerging threat.

Deepfakes are AI-generated media, often videos, that depict individuals saying or doing things they never actually said or did. It’s not the real individuals on screen, but rather computer-generated models of them. While deepfake technology has been used for entertainment and artistic purposes, such as inserting actors into classic films or creating hyper-realistic animations, it has also been leveraged for malicious activities, including fraud and misinformation campaigns.

In the case of the recent $25 million heist, threat actors used deepfake technology to impersonate a high-ranking executive within a large corporation. By creating a convincing video message, using digitally recreated versions of the company’s CFO & other employees, the scammer was able to instruct the only “real employee” on the video call to transfer funds to offshore accounts, ultimately leading to the massive loss. This incident underscores organizations’ vulnerability to sophisticated cyber attacks and the need for robust security measures.

One of the key challenges posed by deepfake scams is their ability to deceive even the most cautious individuals. Unlike traditional phishing emails or scam calls, which often contain obvious signs of fraud, deepfake videos can be incredibly convincing, making it difficult for people to discern fact from fiction. This makes it crucial for organizations to implement multi-factor authentication and other security measures to verify the identity of individuals requesting sensitive information or transactions.

Furthermore, the rise of deepfake scams highlights the need for increased awareness and education surrounding AI-based threats. As AI technology continues to advance, so too do the capabilities of malicious actors. It is essential for individuals and organizations alike to stay informed about the latest developments in AI and cyber security and to take proactive steps to protect themselves against potential threats.

In response to the growing threat of deepfake scams, researchers and security experts are working to develop new tools and techniques to detect and mitigate the impact of deepfake technology. These efforts include the development of AI algorithms capable of identifying and flagging deepfake content, as well as the implementation of stricter security protocols within organizations to prevent unauthorized access to sensitive information.

To avoid falling victim to deepfake scams, individuals and organizations can take several proactive steps. First, it’s crucial to verify the authenticity of any requests for sensitive information or transactions, especially if they come from a high-ranking executive or trusted source. This can be done by using multi-factor authentication, contacting the requester through a separate communication channel to confirm the request.

One limitation of this scam is that AI can’t yet recreated the back of a person’s head, so simply asking participants to turn around will reveal their digitally created images. Also, asking participants personal questions might also reveal the limitations of the threat actors’ research.

In terms of cyber security, Check Point plays a crucial role in protecting individuals and organizations from deepfake scams. With a focus on innovative solutions and a dedication to safeguarding users, Check Point stands out as a leader in combating this evolving threat. By providing advanced threat intelligence, network security, and endpoint protection, Check Point enables users to detect and address the risks associated with deepfake technology. Through collaboration with Check Point, individuals and organizations can implement proactive measures to defend against these kinds of scams, contributing to a safer digital landscape for everyone.

Additionally, individuals can stay informed about the latest trends in deepfake technology and cyber security by following reputable sources and participating in training programs.

To receive cutting-edge cyber insights, groundbreaking research and emerging threat analyses each week, subscribe to the CyberTalk.org newsletter.

Advancing technology for aquaculture

Advancing technology for aquaculture

According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.”

LoReFT: Representation Finetuning for Language Models

Parameter-efficient fine-tuning or PeFT methods seek to adapt large language models via updates to a small number of weights. However, a majority of existing interpretability work has demonstrated that representations encode semantic rich information, suggesting that it might be a better and more powerful alternative to…

How Bias Will Kill Your AI/ML Strategy and What to Do About It

‘Bias’ in models of any type describes a situation in which the model responds inaccurately to prompts or input data because it hasn’t been trained with enough high-quality, diverse data to provide an accurate response. One example would be Apple’s facial recognition phone unlock feature, which…

The Rise of AI Software Engineers: SWE-Agent, Devin AI and the Future of Coding

The field of artificial intelligence (AI) continues to push the boundaries of what was once thought impossible. From self-driving cars to language models that can engage in human-like conversations, AI is rapidly transforming various industries, and software development is no exception. The emergence of AI-powered software…

Mixtral 8x22B sets new benchmark for open models

Mistral AI has released Mixtral 8x22B, which sets a new benchmark for open source models in performance and efficiency. The model boasts robust multilingual capabilities and superior mathematical and coding prowess. Mixtral 8x22B operates as a Sparse Mixture-of-Experts (SMoE) model, utilising just 39 billion of its…