It is clear that artificial intelligence is disrupting every industry as we know it. This includes not only the sectors that have garnered the most attention — such as SaaS, fintech, healthtech, and travel — but also traditionally heavy industries that are ripe for disruption. As…
Snowflake Arctic: The Cutting-Edge LLM for Enterprise AI
Enterprises today are increasingly exploring ways to leverage large language models (LLMs) to boost productivity and create intelligent applications. However, many of the available LLM options are generic models not tailored for specialized enterprise needs like data analysis, coding, and task automation. Enter Snowflake Arctic –…
Igor Jablokov, Pryon: Building a responsible AI future
As artificial intelligence continues to rapidly advance, ethical concerns around the development and deployment of these world-changing innovations are coming into sharper focus. In an interview ahead of the AI & Big Data Expo North America, Igor Jablokov, CEO and founder of AI company Pryon, addressed…
Microsoft Unveils Phi-3: Powerful Open AI Models Delivering Top Performance at Small Sizes
Microsoft has introduced Phi-3, a new family of small language models (SLMs) that aim to deliver high performance and cost-effectiveness in AI applications. These models have shown strong results across benchmarks in language comprehension, reasoning, coding, and mathematics when compared to models of similar and larger…
Microsoft unveils Phi-3 family of compact language models
Microsoft has announced the Phi-3 family of open small language models (SLMs), touting them as the most capable and cost-effective of their size available. The innovative training approach developed by Microsoft researchers has allowed the Phi-3 models to outperform larger models on language, coding, and math…
Overcoming the Top Security Challenges of AI-Driven Low-Code/No Code Development
Low-code development platforms have changed the way people create custom business solutions, including apps, workflows, and copilots. These tools empower citizen developers and create a more agile environment for app development. Adding AI to the mix has only enhanced this capability. The fact that there aren’t…
Lin Qiao, CEO & Co-Founder of Fireworks AI – Interview Series
Lin Qiao, was formerly head of Meta’s PyTorch and is the Co-Founder and CEO of Fireworks AI. Fireworks AI is a production AI platform that is built for developers, Fireworks partners with the world’s leading generative AI researchers to serve the best models, at the fastest…
Everything You Need to Know About Llama 3 | Most Powerful Open-Source Model Yet | Concepts to Usage
Meta has recently released Llama 3, the next generation of its state-of-the-art open source large language model (LLM). Building on the foundations set by its predecessor, Llama 3 aims to enhance the capabilities that positioned Llama 2 as a significant open-source competitor to ChatGPT, as outlined…
Mapping the brain pathways of visual memorability
For nearly a decade, a team of MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers have been seeking to uncover why certain images persist in a people’s minds, while many others fade. To do this, they set out to map the spatio-temporal brain dynamics involved in recognizing a visual image. And now for the first time, scientists harnessed the combined strengths of magnetoencephalography (MEG), which captures the timing of brain activity, and functional magnetic resonance imaging (fMRI), which identifies active brain regions, to precisely determine when and where the brain processes a memorable image.
Their open-access study, published this month in PLOS Biology, used 78 pairs of images matched for the same concept but differing in their memorability scores — one was highly memorable and the other was easy to forget. These images were shown to 15 subjects, with scenes of skateboarding, animals in various environments, everyday objects like cups and chairs, natural landscapes like forests and beaches, urban scenes of streets and buildings, and faces displaying different expressions. What they found was that a more distributed network of brain regions than previously thought are actively involved in the encoding and retention processes that underpin memorability.
“People tend to remember some images better than others, even when they are conceptually similar, like different scenes of a person skateboarding,” says Benjamin Lahner, an MIT PhD student in electrical engineering and computer science, CSAIL affiliate, and first author of the study. “We’ve identified a brain signature of visual memorability that emerges around 300 milliseconds after seeing an image, involving areas across the ventral occipital cortex and temporal cortex, which processes information like color perception and object recognition. This signature indicates that highly memorable images prompt stronger and more sustained brain responses, especially in regions like the early visual cortex, which we previously underestimated in memory processing.”
While highly memorable images maintain a higher and more sustained response for about half a second, the response to less memorable images quickly diminishes. This insight, Lahner elaborated, could redefine our understanding of how memories form and persist. The team envisions this research holding potential for future clinical applications, particularly in early diagnosis and treatment of memory-related disorders.
The MEG/fMRI fusion method, developed in the lab of CSAIL Senior Research Scientist Aude Oliva, adeptly captures the brain’s spatial and temporal dynamics, overcoming the traditional constraints of either spatial or temporal specificity. The fusion method had a little help from its machine-learning friend, to better examine and compare the brain’s activity when looking at various images. They created a “representational matrix,” which is like a detailed chart, showing how similar neural responses are in various brain regions. This chart helped them identify the patterns of where and when the brain processes what we see.
Picking the conceptually similar image pairs with high and low memorability scores was the crucial ingredient to unlocking these insights into memorability. Lahner explained the process of aggregating behavioral data to assign memorability scores to images, where they curated a diverse set of high- and low-memorability images with balanced representation across different visual categories.
Despite strides made, the team notes a few limitations. While this work can identify brain regions showing significant memorability effects, it cannot elucidate the regions’ function in how it is contributing to better encoding/retrieval from memory.
“Understanding the neural underpinnings of memorability opens up exciting avenues for clinical advancements, particularly in diagnosing and treating memory-related disorders early on,” says Oliva. “The specific brain signatures we’ve identified for memorability could lead to early biomarkers for Alzheimer’s disease and other dementias. This research paves the way for novel intervention strategies that are finely tuned to the individual’s neural profile, potentially transforming the therapeutic landscape for memory impairments and significantly improving patient outcomes.”
“These findings are exciting because they give us insight into what is happening in the brain between seeing something and saving it into memory,” says Wilma Bainbridge, assistant professor of psychology at the University of Chicago, who was not involved in the study. “The researchers here are picking up on a cortical signal that reflects what’s important to remember, and what can be forgotten early on.”
Lahner and Oliva, who is also the director of strategic industry engagement at the MIT Schwarzman College of Computing, MIT director of the MIT-IBM Watson AI Lab, and CSAIL principal investigator, join Western University Assistant Professor Yalda Mohsenzadeh and York University researcher Caitlin Mullin on the paper. The team acknowledges a shared instrument grant from the National Institutes of Health, and their work was funded by the Vannevar Bush Faculty Fellowship via an Office of Naval Research grant, a National Science Foundation award, Multidisciplinary University Research Initiative award via an Army Research Office grant, and the EECS MathWorks Fellowship. Their paper is published in PLOS Biology.