The “Other” C in CSS

I think it’s worth listening to anything Sara Soueidan has to say. That’s especially true if she’s speaking at an event for the first time in four years, which was the case when she took the stage at CSS Day …

The “Other” C in CSS originally…

Chinese firms use cloud loophole to access US AI tech

Chinese organisations are utilising cloud services from Amazon and its competitors to gain access to advanced US AI chips and capabilities that they cannot otherwise obtain, according to a Reuters report based on public tender documents. In a comprehensive investigation, Reuters revealed how Chinese cloud access…

Baidu restricts Google and Bing from scraping content for AI training

Chinese internet search provider Baidu has updated its Wikipedia-like Baike service to prevent Google and Microsoft Bing from scraping its content. This change was observed in the latest update to the Baidu Baike robots.txt file, which denies access to Googlebot and Bingbot crawlers. According to the…

Perplexity AI Review: Ditch Google & ChatGPT For Good?

Are you tired of endlessly sifting through search results that seem to miss the mark? Or perhaps you’ve grown frustrated with AI tools that often fall short of your research needs? It’s easy to spend countless hours navigating through search results and wrestling with AI tools…

Designing better delivery for medical therapies

Early in his undergraduate studies in bioengineering, Sayo Eweje was thinking of a career in medicine. He was inspired by the idea of harnessing medical knowledge to improve patients’ lives, having grown up seeing his father do so as a gastroenterologist. However, his research experiences in college made him appreciate how scientific advancement can lead to paradigm-shifting innovations. What if he could contribute to breakthroughs that improved lives on a much larger scale?

“That idea really captured me, and I realized that we’re only enabled to do that by really delving into the frontiers of science,” he says. In his junior year of college, he decided to aim for a career as a physician-scientist, splitting his time between caring for patients and conducting research. After graduating, he entered the Harvard-MIT MD/PhD program, which is affiliated with both Harvard Medical School and MIT’s Institute for Medical Engineering and Sciences.

Now, Eweje is entering his sixth year in the program, and the fourth year of his PhD studies in medical engineering through the Harvard-MIT Program in Health Sciences and Technology. Throughout his PhD, he has worked in the lab of Elliot Chaikof at Beth Israel Deaconess Medical Center, where his research has focused on the development of protein-based nanoparticle systems for delivering nucleic acid and protein therapies directly to cells inside the body.

Feyisayo Eweje uses a pipette-style device in the lab.

Eweje intends to continue encouraging young people to explore STEM. “Everyone should have the right to explore their fullest potential,” he says.

Photo: Jake Belcher


Eweje’s interest in this area was sparked shortly after he entered the program: Initial reports describing a promising new gene editing-based treatment for inherited blood disorders were released, highlighting the curative potential of this approach. However, administering this therapy involves removing blood-forming stem cells from patients, editing them, then putting them back in. In order to accommodate the edited cells, recipients undergo heavy chemotherapy, which led to questions surrounding toxicity and scalability.

“The thought that I had, and that many others in the field had, is that if we could deliver these gene-editing therapies inside of the body without having to remove cells, without having to do this chemotherapy, his could be a much more effective and accessible therapy,” Eweje says.

“After thinking about problems like that and understanding that a lot of this ultimately comes down to drug delivery and engineering nanoparticles and delivery vehicles, I realized that’s where I want to spend my time,” he says. “There are so many challenges in treating disease where the bottleneck ultimately comes down to effective delivery.”

Striking disease at the source

A number of diseases are caused by mutations in hematopoietic (blood-forming) stem cells, and Eweje chose Chaikof’s lab in part because the team was looking for ways to deliver RNA and protein therapies directly to those cells in patients. The work has spun off in many interesting directions since then.

“It started there, but it has become a much broader platform-focused project,” Eweje explains. “We’re looking at things ranging from gene editing in the lungs to immunotherapy and thinking about new cancer treatments.”

This January, he published an article in Biomaterials that gave a progress update on the state of research using protein-based nanoparticles to deliver nucleic acid therapies to cells. Historically, scientists have found success with viral vectors for delivering gene-based therapies, but because of those viral origins, there remains the possibility of triggering a patient’s immune system.

“Protein materials, particularly human-derived protein materials, are far less likely to trigger that immune response, which is one major advantage,” he says. “The other thing that we’re actively working towards in the lab is this idea of leveraging programmability and precise structure in recombinant proteins.”

While much work remains to determine whether nonviral, protein-based nanoparticles can used as effectively as those that are virus-derived, or lipid nanoparticles, he’s grateful to have learned valuable lessons during this process.

“I really appreciate the fact that I’ve had an opportunity to learn about what’s out there, better understand the challenges, and carry that knowledge forward,” he says.

Building opportunity for others

Outside the lab and the hospital, Eweje is engaged in education and outreach projects as close as Cambridge and as far as Nigeria, where his family traces their roots. He is a co-founder of the Program of Ragon and IMES in Science and Medicine (PRISM), which hosts weekly programs for high school students in the greater Boston area to learn directly from scientists and clinicians about various topics in STEM.

“I see kids as stem cells,” he says. “They have so much potential to differentiate into so many different things, but you have to put them in a proper environment and give them the exposure required to understand where they can go.”

He’s also a co-managing director of the Critical Healthcare Information Integration Network (CHIIN), a nonprofit that provides medical information to community health workers in rural and underdeveloped areas of Africa. It operates via a chatbot that can respond to queries over SMS text messaging and is therefore able to reach communities without internet access, indirectly assisting thousands of patients.

“Part of it was developing confidence in the users by giving them something to have in their back pocket as a reference tool,” he says.

As his time in the HST program draws to a close, Eweje aims to defend his PhD next year and return to full-time clinical work at Harvard Medical School. Ultimately, he envisions a career at the intersection of clinical medicine and biotech innovation.

He also intends to continue encouraging young people to explore STEM. “Everyone should have the right to explore their fullest potential,” he says.

“I find a lot of gratification in the impact that we can have on someone’s life just by giving them the opportunity to learn about something, which could change the trajectory of what they do,” he adds. “We have not only the pleasure of doing that, but also a little bit of an obligation.”

Google Releases Three New Experimental Gemini Models

Google has just announced the release of three new experimental AI models, showcasing its ongoing innovation in the field while also highlighting the rapid pace at which AI capabilities are progressing.  At the forefront of Google’s new offerings is the Gemini 1.5 Flash 8B, a compact…

Making a measurable economic impact

How do you measure the value of an economic policy? Of an aid organization’s programming? For Saeed Miganeh, who completed an MITx MicroMasters in Data, Economics, and Development Policy and is now enrolled in MIT’s master’s program in Data, Economics, and Design of Policy (DEDP), these are key questions he is determined to answer.

“Enrolling at MIT fed my interest in investigating the political economy questions surrounding the development of African countries,” he says. “It boils down to promoting pro-poor, evidence-based policymaking in the developing world.”

Miganeh earned a bachelor of business administration from the University of Hargeisa and completed coursework in Open University Malaysia’s master of business administration program. Before enrolling at MIT full time, he spent 14 years as an accountant with the United Nations’ International Organization for Migration. His work with the IOM fed his curiosity about intent and impact, particularly how political agendas can affect policy adoption, how safeguarding human rights strengthens peace and prevents conflict, how climate change adaptation policies affect the poor, and how promoting intra-African trade spurs economic growth in the continent.

“My journey to DEDP began when I earned a certificate in Monitoring and Evaluation offered by the International Training Center of the International Labour Organization,” he recalls. “Our course coach recommended taking MITx courses, which led me to the MicroMasters program.”

Saeed grew up and completed his early education in the self-declared Republic of Somaliland during the reconstruction period after a decade-long civil war with Somalia. He was inspired by his country’s development of a functioning democracy and economy after conflict. Miganeh’s work is all the more impressive for someone who has lived almost exclusively there — with the exception of four years as a child spent in Ethiopia due to the civil war in Somalia — and whose studies have taken place entirely in the republic.

“Africa is the new battleground for fighting global poverty in the 21st century,” he says.

Practices and progress toward measurable improvement

Before pursuing graduate study at MIT, Miganeh worked in youth development programs with the Somaliland National Youth Organization. “I was the coordinator for one of their youth networks that worked on health,” he says. “After completing my undergraduate study, I assumed the position of finance officer for the organization.”

Later during his tenure with IOM, Miganeh learned that, while the organization has a central evaluation function that evaluates projects and programs, Somaliland’s governmental institutions lacked the capacity to effectively evaluate public policies and programs effectively. His work with the IOM helped him discover the practice areas where he might benefit from partnering with others possessing expertise he’d need to make a difference. “During my work with IOM, I was involved in development projects’ administrative and accounting functions,” he remembers. “I was interested in knowing how projects were impacting beneficiaries’ lives.

Miganeh wants to dig deeper into understanding and answering developing African countries’ political economy questions, noting that “development projects can consume lots of resources from design through implementation.” Ensuring these programs’ effectiveness is crucial to maximizing their impact and societal benefit. “Every country needs to have the necessary human capital to undertake evidence-based policy design to avoid wasting resources,” he says.

He returned to Somaliland to complete a capstone project that will allow him to put his newly acquired skills and knowledge to work. The project is an important part of his master’s program. “I’m [working] with the Somaliland Ministry of Education & Science, assisting in institutionalizing evidence-based policymaking in the education sector,”  he says.

A unique vision to drive effective change

Miganeh is already planning to use the skills he’s acquiring at MIT to facilitate change at home. “I must discover and produce policy insights using my research and, with the guidance of the top academics and professionals at MIT and other institutions, translate them into effective policies that can make a demonstrable impact,” he says.

Miganeh reports that MITx’s MicroMasters and DEDP master’s programs help students develop the unique blend of skills — including the ability to leverage data-driven insights to design, implement, and evaluate public policies that improve societal outcomes — that can help them become effective agents of social change.

“My early enthusiasm for mathematics in high school and my later work in development organizations gave me the right combination to excel in the rigorous developmental economics coursework at MIT,” he says. “Once I’ve completed the program, I will establish a consultancy to advise government agencies, nonprofits, and the private sector’s corporate social responsibility departments on designing, implementing, and evaluating policies and programs.”

Miganeh lauded the faculty and students he encountered while continuing his studies. “I have developed professionally and personally,” he reports. He saved his highest praise for the Institute, however.

“Pursuing this master’s degree at MIT, where modern economics education has been reinvented and is home to faculty including Nobel laureates and other distinguished professors and scholars, was an enriching lifetime experience, personally and professionally,” he says. 

“Looking back on discussions of how to tackle the world’s development challenges is a memory that will stay with me for the rest of my life.”