Oceanographers record the largest predation event ever observed in the ocean

There is power in numbers, or so the saying goes. But in the ocean, scientists are finding that fish that group together don’t necessarily survive together. In some cases, the more fish there are, the larger a target they make for predators.

This is what MIT and Norwegian oceanographers observed recently when they explored a wide swath of ocean off the coast of Norway during the height of spawning season for capelin — a small Arctic fish about the size of an anchovy. Billions of capelin migrate each February from the edge of the Arctic ice sheet southward to the Norwegian coast, to lay their eggs. Norway’s coastline is also a stopover for capelin’s primary predator, the Atlantic cod. As cod migrate south, they feed on spawning capelin, though scientists have not measured this process over large scales until now.

Reporting their findings today in Nature Communications Biology, the MIT team captured interactions between individual migrating cod and spawning capelin, over a huge spatial extent. Using a sonic-based wide-area imaging technique, they watched as random capelin began grouping together to form a massive shoal spanning tens of kilometers. As the capelin shoal formed a sort of ecological “hotspot,” the team observed individual cod begin to group together in response, forming a huge shoal of their own. The swarming cod overtook the capelin, quickly consuming over 10 million fish, estimated to be more than half of the gathered prey.

The dramatic encounter, which took place over just a few hours, is the largest such predation event ever recorded, both in terms of the number of individuals involved and the area over which the event occurred.

This one event is unlikely to weaken the capelin population as a whole; the preyed-upon shoal represents 0.1 percent of the capelin that spawn in the region. However, as climate change causes the Arctic ice sheet to retreat, capelin will have to swim farther to spawn, making the species more stressed and vulnerable to natural predation events such as the one the team observed. As capelin sustains many fish species, including cod, continuously monitoring their behavior, at a resolution approaching that of individual fish and across large scales spanning tens of thousands of square kilometers, will help efforts to maintain the species and the health of the ocean overall.

“In our work we are seeing that natural catastrophic predation events can change the local predator prey balance in a matter of hours,” says Nicholas Makris, professor of mechanical and ocean engineering at MIT. “That’s not an issue for a healthy population with many spatially distributed population centers or ecological hotspots. But as the number of these hotspots deceases due to climate and anthropogenic stresses, the kind of natural ‘catastrophic’ predation event we witnessed of a keystone species could lead to dramatic consequences for that species as well as the many species dependent on them.”

Makris’ co-authors on the paper are Shourav Pednekar and Ankita Jain at MIT, and Olav Rune Godø of the Institute of Marine Research in Norway.

Bell sounds

For their new study, Makris and his colleagues reanalyzed data that they gathered during a cruise in February of 2014 to the Barents Sea, off the coast of Norway. During that cruise, the team deployed the Ocean Acoustic Waveguide Remote Sensing (OAWRS) system — a sonic imaging technique that employs a vertical acoustic array, attached to the bottom of a boat, to send sound waves down into the ocean and out in all directions. These waves can travel over large distances as they bounce off any obstacles or fish in their path.

The same or a second boat, towing an array of acoustic receivers, continuously picks up the scattered and reflected waves, from as far as many tens of kilometers away. Scientists can then analyze the collected waveforms to create instantaneous maps of the ocean over a huge areal extent.

Previously, the team reconstructed maps of individual fish and their movements, but could not distinguish between different species. In the new study, the researchers applied a new “multispectral” technique to differentiate between species based on the characteristic acoustic resonance of their swim bladders.

“Fish have swim bladders that resonate like bells,” Makris explains. “Cod have large swim bladders that have a low resonance, like a Big Ben bell, whereas capelin have tiny swim bladders that resonate like the highest notes on a piano.”

By reanalyzing OAWRS data to look for specific frequencies of capelin versus cod, the researchers were able to image fish groups, determine their species content, and map the movements of each species over a huge areal extent.

Watching a wave

The researchers applied the multi-spectral technique to OAWRS data collected on Feb. 27, 2014, at the peak of the capelin spawning season. In the early morning hours, their new mapping showed that capelin largely kept to themselves, moving as random individuals, in loose clusters along the Norwegian coastline. As the sun rose and lit the surface waters, the capelin began to descend to darker depths, possibly seeking places along the seafloor to spawn.

The team observed that as the capelin descended, they began shifting from individual to group behavior, ultimately forming a huge shoal of about 23 million fish that moved in a coordinated wave spanning over ten kilometers long.

“What we’re finding is capelin have this critical density, which came out of a physical theory, which we have now observed in the wild,” Makris says. “If they are close enough to each other, they can take on the average speed and direction of other fish that they can sense around them, and can then form a massive and coherent shoal.”

As they watched, the shoaling fish began to move as one, in a coherent behavior that has been observed in other species but never in capelin until now. Such coherent migration is thought to help fish save energy over large distances by essentially riding the collective motion of the group.

In this instance, however, as soon as the capelin shoal formed, it attracted increasing numbers of cod, which quickly formed a shoal of their own, amounting to about 2.5 million fish, based on the team’s acoustic mapping. Over a few short hours, the cod consumed 10.5 million capelin over tens of kilometers before both shoals dissolved and the fish scattered away. Makris suspects that such massive and coordinated predation is a common occurrence in the ocean, though this is the first time that scientists have been able to document such an event.

“It’s the first time seeing predator-prey interaction on a huge scale, and it’s a coherent battle of survival,” Makris says. “This is happening over a monstrous scale, and we’re watching a wave of capelin zoom in, like a wave around a sports stadium, and they kind of gather together to form a defense. It’s also happening with the predators, coming together to coherently attack.”

“This is a truly fascinating study that documents complex spatial dynamics linking predators and prey, here cod and capelin, at scales previously unachievable in marine ecosystems,” says George Rose, professor of fisheries at the University of British Columbia, who studies the ecology and productivity of cod in the North Atlantic, and was not involved in this work. “Simultaneous species mapping with the OAWRS system…enables insight into fundamental ecological processes with untold potential to enhance current survey methods.”

Makris hopes to deploy OAWRS in the future to monitor the large-scale dynamics among other species of fish.

“It’s been shown time and again that, when a population is on the verge of collapse, you will have that one last shoal. And when that last big, dense group is gone, there’s a collapse,” Makris says. “So you’ve got to know what’s there before it’s gone, because the pressures are not in their favor.”

This work was supported, in part, by the U.S. Office of Naval Research and the Institute of Marine Research in Norway. 

Fusing science and culture through metalsmithing

As the metal artist in residence and technical instructor in MIT’s Department of Materials Science and Engineering (DMSE), Rhea Vedro operates in a synthesis of realms that broadens and enriches the student experience at MIT.

“Across MIT,” she says, “people in the arts, humanities, and sciences come together, and as soon as there’s opportunity to talk, sparks fly with all of the cross-pollination that is possible. It’s a rich place to be, and an exciting opportunity to work with our students in that way.”

In 2022, when Vedro read the job description for her current position at MIT, she says it resonated deeply with her interests and experiences. An outgrowth of MIT’s strong tradition of “mens et manus” (“mind and hand”), the position fused seamlessly with her own background.

“It was like I had written it myself. I couldn’t believe the position existed,” Vedro says.

Vedro’s relationship with metals had begun early. Even as a child growing up in Madison, Wisconsin, she collected minerals and bits of metal — and was in heaven when her godmother in New York City would take her to the Garment District, where she delightedly dug through wholesale bins of jewelry elements.

“I believe that people are called to different mediums,” she says. “Artists are often called to work with wood or clay or paper. And while I love all of those, metal has always been my home.”

After earning a master of fine arts in metals at the State University of New York at New Paltz, Vedro combined her art practice over the years with community work, as well as with an academic pursuit into metalsmithing history. “Through material culture, anthropology, and archeology, you can trace civilizations by how they related to this material.”

Vedro teaches classes 3.093 (Metalsmithing: Objects and Power), 3.095 (Introduction to Metalsmithing), and 4:A02 (DesignPlus: Exploring Design), where students learn techniques like soldering, casting, and etching, and explore metalsmithing through a cultural lens.

“In my class, we look at objects like the tool, the badge, the ring, the crown, the amulet, armor in relationship to the body and power,” Vedro says.

Vedro also supports the lab sections of class 3.094 (Materials in Human Experience), an experiential investigation into early techniques for developing cementitious materials and smelting iron, with an eye toward the future of these technologies.

Explaining her own artistic journey, which has taken her all over the world, Vedro says the “through-line” of her practice involves the idea of transformation, via the physical process of her hands-on work as a metalsmith, a fascination with materiality, and her community work to “transform lives through the art of making something.”

Such transformation is demonstrated in her ongoing commission by the City of Boston Mayor’s Office of Arts and Culture, entitled Amulet, which invited the public to community workshops, and to Vedro’s “Workbench” positioned by the waterfront in East Boston, to use metal tools of the trade. Each participant made their own mark on sheets of metal, asked to act with an intention or wish for safe passage of a loved one or for one’s own journey. Vedro will fashion the sheets, bearing the “wishmarks” of so many community members into several 16-to-17-foot birds, positioning them to stand guard at Boston City Hall Plaza.

At MIT, students come to the DMSE’s Merton C. Flemings Materials Processing Laboratory to work on creative projects in fine metals and steel, and also to craft parts for highly technical research in a wide range of fields, from mechanical engineering to aeronautics and astronautics.

“Students will come proposing to make a custom battery housing, a coil for a project going into outer space, a foundry experiment, or to etch and polish one crystal of aluminum,” Vedro says. “These are very specific requests that are not artistic in their origin and rely upon the hands-on metalsmithing of my team, including Mike Tarkanian [DMSE senior lecturer], James Hunter, [DMSE lecturer], and Shaymus Hudson [DSME technical instructor].”

Whatever the students’ inspiration, Vedro says she is struck by how motivated they are to do their best work — even despite the setbacks and time required that are part of developing a new skill.

“Everyone here is intensely driven,” she says, adding that many students, perhaps because of their familiarity with the scientific process, “are really good at taking quote-unquote failures as part of their learning process.”

Throughout their exploration in the lab, otherwise known as the Forge/Foundry, many students discover the power of working with their hands.

“There is a zone you get into, where you are becoming one with what you’re doing and lose track of time, and you are only paying attention to how material is behaving under your hand,” Vedro says.

Sometimes the zone produces not only a fine piece of metalwork, but an inspiration about something unrelated, such as a new approach to a research project.

“It frees up the mind, just like when you’re sleeping and you process things you studied the night before,” Vedro says. “You can be working with your hands on something, and many other ideas come together.”

Asked whether 15 years ago she would have thought she’d be working at MIT, Vedro says, “Oh, no. My path has been such an incredible braid of different experiences. It’s a reminder to stay true to your unique path, because you can be like me — in a place I would never have anticipated, where I feel energized every day to come in and see what will cross my path.”

Fighting AI with AI in the Modern Threat Landscape

It’s not exactly breaking news to say that AI has dramatically changed the cybersecurity industry. Both attackers and defenders alike are turning to artificial intelligence to uplevel their capabilities, each striving to stay one step ahead of the other. This cat-and-mouse game is nothing new—attackers have…

William Falcon, Founder and CEO of Lightning AI – Interview Series

Lightning AI is the creator of PyTorch Lightning, a framework designed for training and fine-tuning AI models, as well as Lightning AI Studio. PyTorch Lightning was initially developed by William Falcon in 2015 while he was at Columbia University. It was later open-sourced in 2019 during…

Jarrod Goentzel receives 2024 Humanitarian Logistics Award

In recognition of his leadership and contributions to global disaster response efforts, Jarrod Goentzel, founder and director of the MIT Humanitarian Supply Chain Lab (HSCL), has been awarded the 2024 Humanitarian Logistics Award by the American Logistics Aid Network (ALAN). This honor underscores the vital work of the lab, particularly during times of crisis, including the ongoing relief efforts during and following Hurricane Milton.

For over a decade, Goentzel’s lab at MIT has played a pivotal role in improving the efficiency and effectiveness of humanitarian responses around the world. By leveraging advanced supply chain technologies and methodologies, the HSCL focuses on delivering aid where it’s needed most, especially in the face of natural disasters and other large-scale emergencies.

“We’re proud to spotlight the efforts of Dr. Goentzel and the other honorees, who serve as exemplary models of what it means to uplift one’s community and the overall humanitarian ecosystem,” says ALAN Executive Director Kathy Fulton. “They are truly leading the way for our industry to help disaster survivors in their own backyards and around the world.”

The 2024 ALAN award recognizes Goentzel’s innovative approach to logistics, which emphasizes collaboration between public, private, and nonprofit organizations. The lab’s work has been instrumental in improving disaster preparedness and response strategies, helping communities across the United States and globally recover more quickly from devastating events.

Focus on U.S. disaster relief and Hurricane Milton

The lab’s efforts have been especially critical during U.S. storm seasons. With hurricanes becoming more frequent and severe, the HSCL has worked closely with government agencies and aid organizations to provide real-time solutions for relief logistics. During Hurricane Milton, which recently devastated parts of the southeastern United States, the lab’s expertise was in high demand.

Using data-driven tools and predictive models, the lab assists in assessing infrastructure damage, forecasting supply chain needs, and coordinating logistics between responders. Following a Washington roundtable earlier this year, Goentzel and Research Associate Lauren Finegan published a report on “Scaling Post-Disaster Housing Capacity” to better understand housing demands, survivor needs, response policies, and the potential for scaling construction capacity. Another paper from Goentzel’s lab, co-authored with Shraddha Rana, Justin Boutilier, and MIT CTL Research Engineer Timothy Russell, looked to model fuel distribution operational flow capacity in post-disaster areas. The lab also works on planning to ensure that critical resources such as food, water, and medical supplies reach the most affected areas as quickly and efficiently as possible.

“The scale and complexity of natural disasters like Hurricane Milton require sophisticated logistics planning and coordination,” says Goentzel. “Our lab works on anticipating disruptions and ensuring that response efforts can adapt to the dynamic nature of these events.”

A history of impact

This latest recognition from ALAN is not the first time Goentzel and his team have been honored for their work in humanitarian logistics. In 2018, the HSCL received recognition from ALAN for its efforts in hurricane relief, which at the time included responding to hurricanes Harvey, Irma, and Maria. The lab’s contributions helped streamline supply chain operations and coordinate response teams, making a meaningful difference in how aid was delivered to impacted communities.

Under Goentzel’s leadership, the lab has focused not just on responding to crises, but also to building more resilient supply chains that can withstand future challenges. This research has helped humanitarian organizations and governments improve their preparedness, reducing the time and cost of getting aid to where it’s needed most.

Beyond natural disasters

Although natural disasters remain a core focus, the lab’s work extends beyond storm seasons and hurricanes. The team supports efforts in various humanitarian contexts, including refugee crises, pandemic responses, and large-scale conflicts. Goentzel and his colleagues have also contributed to global initiatives aimed at addressing longer-term challenges such as food insecurity and climate change, and enabling communities to streamline training for local responders, optimizing aid delivery, and building scalable and adaptive supply chains.

The guidance and expertise within the Humanitarian Supply Chain Lab has grown along with the frequency and severity of natural disasters. “This recognition from ALAN is a testament to the incredible work of our team and partners,” Goentzel says, “but our mission is to continuously understand and improve supply chain systems to meet human needs. There’s still much more to be done.”

The mission of the MIT Humanitarian Supply Chain Lab is to understand and improve the supply chain systems behind public services and private markets to meet human needs. Based within the MIT Center for Transportation and Logistics, the lab combines MIT expertise in engineering, management, information technology, social science, economics, urban planning, and other disciplines to drive practical innovation for humanitarian interventions.

Founded in 2005 in the wake of Hurricane Katrina, ALAN is a philanthropic, industry-wide organization that provides free logistics assistance to disaster relief organizations before, during, and after catastrophic events. It does this by bringing the expertise and resources of the logistics industry together with humanitarian organizations so that help can arrive sooner, and each relief dollar can be maximized. Over the years it has coordinated compassionate supply chain services for disasters including hurricanes, wildfires, tornadoes, earthquakes, and floods. 

Established in 2017, ALAN’s Humanitarian Logistics Awards recognize companies and individuals who exemplify the best that the supply chain has to offer by assuring that aid is rapidly delivered to communities in crisis. Presented annually, they are open to any logistics professional, organization, or department. For a complete list of previous winners, visit ALAN’s website.

MIT affiliates receive 2024-25 awards and honors from the American Physical Society

A number of individuals with MIT ties have received honors from the American Physical Society (APS) for 2024 and 2025.

Awardees include Professor Frances Ross; Professor Vladan Vuletić, graduate student Jiliang Hu ’19, PhD ’24; as well as 10 alumni. New APS Fellows include Professor Joseph Checkelsky, Senior Researcher John Chiaverini, Associate Professor Areg Danagoulian, Professor Ruben Juanes, and seven alumni.

Frances M. Ross, the TDK Professor in Materials Science and Engineering, received the 2025 Joseph F. Keithley Award For Advances in Measurement Science  “for groundbreaking advances in in situ electron microscopy in vacuum and liquid environments.”

Ross uses transmission electron microscopy to watch crystals as they grow and react under different conditions, including both liquid and gaseous environments. The microscopy techniques developed over Ross’ research career help in exploring growth mechanisms during epitaxy, catalysis, and electrochemical deposition, with applications in microelectronics and energy storage. Ross’ research group continues to develop new microscopy instrumentation to enable deeper exploration of these processes.

Vladan Vuletićthe Lester Wolfe Professor of Physics, received the 2025 Arthur L. Schawlow Prize in Laser Science “for pioneering work on spin squeezing for optical atomic clocks, quantum nonlinear optics, and laser cooling to quantum degeneracy.” Vuletić’s research includes ultracold atoms, laser cooling, large-scale quantum entanglement, quantum optics, precision tests of physics beyond the Standard Model, and quantum simulation and computing with trapped neutral atoms.

His Experimental Atomic Physics Group is also affiliated with the MIT-Harvard Center for Ultracold Atoms and the Research Laboratory of Electronics (RLE). In 2020, his group showed that the precision of current atomic clocks could be improved by entangling the atoms — a quantum phenomenon by which particles are coerced to behave in a collective, highly correlated state.

Jiliang Hu received the 2024 Award for Outstanding Doctoral Thesis Research in Biological Physics “for groundbreaking biophysical contributions to microbial ecology that bridge experiment and theory, showing how only a few coarse-grained features of ecological networks can predict emergent phases of diversity, dynamics, and invasibility in microbial communities.”

Hu is working in PhD advisor Professor Jeff Gore’s lab. He is interested in exploring the high-dimensional dynamics and emergent phenomena of complex microbial communities. In his first project, he demonstrated that multi-species communities can be described by a phase diagram as a function of the strength of interspecies interactions and the diversity of the species pool. He is now studying alternative stable states and the role of migration in the dynamics and biodiversity of metacommunities.

Alumni receiving awards:

Riccardo Betti PhD ’92 is the 2024 recipient of the John Dawson Award in Plasma Physics “for pioneering the development of statistical modeling to predict, design, and analyze implosion experiments on the 30kJ OMEGA laser, achieving hot spot energy gains above unity and record Lawson triple products for direct-drive laser fusion.”

Javier Mauricio Duarte ’10 received the 2024 Henry Primakoff Award for Early-Career Particle Physics “for accelerating trigger technologies in experimental particle physics with novel real-time approaches by embedding artificial intelligence and machine learning in programmable gate arrays, and for critical advances in Higgs physics studies at the Large Hadron Collider in all-hadronic final states.”

Richard Furnstahl ’18 is the 2025 recipient of the Feshbach Prize Theoretical Nuclear Physics “for foundational contributions to calculations of nuclei, including applying the Similarity Renormalization Group to the nuclear force, grounding nuclear density functional theory in those forces, and using Bayesian methods to quantify the uncertainties in effective field theory predictions of nuclear observables.”

Harold Yoonsung Hwang ’93, SM ’93 is the 2024 recipient of the James C. McGroddy Prize for New Materials “for pioneering work in oxide interfaces, dilute superconductivity in heterostructures, freestanding oxide membranes, and superconducting nickelates using pulsed laser deposition, as well as for significant early contributions to the physics of bulk transition metal oxides.”

James P. Knauer ’72 received the 2024 John Dawson Award in Plasma Physics “for pioneering the development of statistical modeling to predict, design, and analyze implosion experiments on the 30kJ OMEGA laser, achieving hot spot energy gains above unity and record Lawson triple products for direct-drive laser fusion.”

Sekazi Mtingwa ’71 is the 2025 recipient of the John Wheatley Award “for exceptional contributions to capacity building in Africa, the Middle East, and other developing regions, including leadership in training researchers in beamline techniques at synchrotron light sources and establishing the groundwork for future facilities in the Global South.

Michael Riordan ’68, PhD ’73 received the 2025 Abraham Pais Prize for History of Physics, which “recognizes outstanding scholarly achievements in the history of physics.”

Charles E. Sing PhD ’12 received the 2024 John H. Dillon Medal “for pioneering advances in polyelectrolyte phase behavior and polymer dynamics using theory and computational modeling.”

David W. Taylor ’01 received the 2025 Jonathan F. Reichert and Barbara Wolff-Reichert Award for Excellence in Advanced Laboratory Instruction “for continuous physical measurement laboratory improvements, leveraging industrial and academic partnerships that enable innovative and diversified independent student projects, and giving rise to practical skillsets yielding outstanding student outcomes.”

Wennie Wang ’13 is the 2025 recipient of the Maria Goeppert Mayer Award “for outstanding contributions to the field of materials science, including pioneering research on defective transition metal oxides for energy sustainability, a commitment to broadening participation of underrepresented groups in computational materials science, and leadership and advocacy in the scientific community.”

APS Fellows

Joseph Checkelskythe Mitsui Career Development Associate Professor of Physics, received the 2024 Division of Condensed Matter Physics Fellowship  “for pioneering contributions to the synthesis and study of quantum materials, including kagome and pyrochlore metals and natural superlattice compounds.”

Affiliated with the MIT Materials Research Laboratory and the MIT Center for Quantum Engineering, Checkelsky is working at the intersection of materials synthesis and quantum physics to discover new materials and physical phenomena to expand the boundaries of understanding of quantum mechanical condensed matter systems, as well as open doorways to new technologies by realizing emergent electronic and magnetic functionalities. Research in Checkelsky’s lab focuses on the study of exotic electronic states of matter through the synthesis, measurement, and control of solid-state materials. His research includes studying correlated behavior in topologically nontrivial materials, the role of geometrical phases in electronic systems, and novel types of geometric frustration.

John Chiaverinia senior staff member in the Quantum Information and Integrated Nanosystems group and an MIT principal investigator in RLE, was elected a 2024 Fellow of the American Physical Society in the Division of Quantum Information “for pioneering contributions to experimental quantum information science, including early demonstrations of quantum algorithms, the development of the surface-electrode ion trap, and groundbreaking work in integrated photonics for trapped-ion quantum computation.”  

Chiaverini is pursuing research in quantum computing and precision measurement using individual atoms. Currently, Chiaverini leads a team developing novel technologies for control of trapped-ion qubits, including trap-integrated optics and electronics; this research has the potential to allow scaling of trapped-ion systems to the larger numbers of ions needed for practical applications while maintaining high levels of control over their quantum states. He and the team are also exploring new techniques for the rapid generation of quantum entanglement between ions, as well as investigating novel encodings of quantum information that have the potential to yield higher-fidelity operations than currently available while also providing capabilities to correct the remaining errors.

Areg Danagoulian, associate professor of nuclear science and engineering, received the 2024 Forum on Physics and Society Fellowship “for seminal technological contributions in the field of arms control and cargo security, which significantly benefit international security.”  

His current research interests focus on nuclear physics applications in societal problems, such as nuclear nonproliferation, technologies for arms control treaty verification, nuclear safeguards, and cargo security. Danagoulian also serves as the faculty co-director for MIT’s MISTI Eurasia program.

Ruben Juanes, professor of civil and environmental engineering and earth, atmospheric and planetary sciences (CEE/EAPS) received the 2024 Division of Fluid Dynamics Fellowship “for fundamental advances — using experiments, innovative imaging, and theory — in understanding the role of wettability for controlling the dynamics of fluid displacement in porous media and geophysical flows, and exploiting this understanding to optimize.”

An expert in the physics of multiphase flow in porous media, Juanes uses a mix of theory, computational, and real-life experiments to establish a fundamental understanding of how different fluids such as oil, water, and gas move through rocks, soil, or underwater reservoirs to solve energy and environmental-driven geophysical problems. His major contributions have been in developing improved safety and effectiveness of carbon sequestration, advanced understanding of fluid interactions in porous media for energy and environmental applications, imaging and computational techniques for real-time monitoring of subsurface fluid flowsand insights into how underground fluid movement contributes to landslides, floods, and earthquakes.

Alumni receiving fellowships:

Constantia Alexandrou PhD ’85 is the 2024 recipient of the Division of Nuclear Physics Fellowship “for the pioneering contributions in calculating nucleon structure observables using lattice QCD.”

Daniel Casey PhD ’12 received the 2024 Division of Plasma Physics Fellowship “for outstanding contributions to the understanding of the stagnation conditions required to achieve ignition.”

Maria K. Chan PhD ’09 is the 2024 recipient of the Topical Group on Energy Research and Applications Fellowship “for contributions to methodological innovations, developments, and demonstrations toward the integration of computational modeling and experimental characterization to improve the understanding and design of renewable energy materials.”

David Humphreys ’82, PhD ’91 received the 2024 Division of Plasma Physics Fellowship “for sustained leadership in developing the field of model-based dynamic control of magnetically confined plasmas, and for providing important and timely contributions to the understanding of tokamak stability, disruptions, and halo current physics.

Eric Torrence PhD ’97 received the 2024 Division of Particles and Fields Fellowship “for significant contributions with the ATLAS and FASER Collaborations, particularly in the searches for new physics, measurement of the LHC luminosity, and for leadership in the operations of both experiments.”

Tiffany S. Santos ’02, PhD ’07 is the 2024 recipient of the Topical Group on Magnetism and Its Applications Fellowship “for innovative contributions in synthesis and characterization of novel ultrathin magnetic films and interfaces, and tailoring their properties for optimal performance, especially in magnetic data storage and spin-transport devices.”

Lei Zhou ’14, PhD ’19 received the 2024 Forum on Industrial and Applied Physics Fellowship “for outstanding and sustained contributions to the fields of metamaterials, especially for proposing metasurfaces as a bridge to link propagating waves and surface waves.”

Brains, fashion, alien life, and more: Highlights from the Cambridge Science Festival

What is it like to give birth on Mars? Can bioengineer TikTok stars win at the video game “Super Smash Brothers” while also answering questions about science? How do sheep, mouse, and human brains compare? These questions and others were asked last month when more than 50,000 visitors from across Cambridge, Massachusetts, and Greater Boston participated in the MIT Museum’s annual Cambridge Science Festival, a week-long celebration dedicated to creativity, ingenuity, and innovation. Running Monday, Sept. 23 through Sunday, Sept. 29, the 2024 edition was the largest in its history, with a dizzyingly diverse program spanning more than 300 events presented in more than 75 different venues, all free and open to the public.

Presented in partnership with the City of Cambridge and more than 250 collaborators across Greater Boston, this year’s festival comprised a wide range of interactive programs for adults, children, and families, including workshops, demos, keynote lectures, walking tours, professional networking opportunities, and expert panels. Aimed at scientists and non-scientists alike, the festival also collaborated with several local schools to offer visits from an astronaut for middle- and high-school students.

With support from dozens of local organizations, the festival was the first iteration to happen under the new leadership of Michael John Gorman, who was appointed director of the MIT Museum in January and began his position in July.

“A science festival like this has an incredible ability to unite a diverse array of people and ideas, while also showcasing Cambridge as an internationally recognized leader in science, technology, engineering, and math,” says Gorman. “I’m thrilled to have joined an institution that values producing events that foster such a strong sense of community, and was so excited to see the enthusiastic response from the tens of thousands of people who showed up and made the festival such a success.”

The 2024 Cambridge Science Festival was broad in scope, with events ranging from hands-on 3D-printing demos to concerts from the MIT Laptop Ensemble to participatory activities at the MIT Museum’s Maker Hub. This year’s programming also highlighted three carefully curated theme tracks that each encompassed more than 25 associated events:

  1. “For the Win: Games, Puzzles, and the Science of Play” (Thursday) consisted of multiple evening events clustered around Kendall Square.
  2. “Frontiers: A New Era of Space Exploration” (Friday and Saturday) featured programs throughout Boston and was co-curated by The Space Consortium, organizers of Massachusetts Space Week.
  3. “Electric Skin: Wearable Tech and the Future of Fashion” (Saturday) offered both day and evening events at the intersection of science, fabric, and fashion, taking place at The Foundry and co-curated by Boston Fashion Week and Advanced Functional Fabrics of America.

One of the discussions tied to the games-themed “For the Win” track involved artist Jeremy Couillard speaking with MIT Lecturer Mikael Jakobsson about the larger importance of games as a construct for encouraging interpersonal interaction and creating meaningful social spaces. Starting this past summer, the List Visual Arts Center has been the home of Couillard’s first-ever institutional solo exhibition, which centers around “Escape from Lavender Island,” a dystopian third-person, open-world exploration game he released in 2023 on the Steam video-game platform.

For the “Frontiers” space theme, one of the headlining events, “Is Anyone Out There?”, tackled the latest cutting-edge research and theories related to the potential existence of extraterrestrial life. The panel of local astronomers and astrophysicists included Sara Seager, the Class of 1941 Professor of Planetary Science, professor of physics, and professor of aeronautics and astronautics at MIT; Kim Arcand, an expert in astronomic visualization at the Harvard-Smithsonian Center for Astrophysics; and Michael Hecht, a research scientist and associate director of research management at MIT’s Haystack Observatory. The researchers spoke about the tools they and their peers use to try to search for extraterrestrial life, and what discovering life beyond our planet might mean for humanity.

For the “Electric Skin” fashion track, events spanned a range of topics revolving around the role that technology will play in the future of the field, including sold-out workshops where participants learned how to laser-cut and engineer “structural garments.” A panel looking at generative technologies explored how designers are using AI to spur innovation in their companies. Onur Yüce Gün, director of computational design at New Balance, also spoke on a panel with Ziyuan “Zoey” Zhu from IDEO, MIT Media Lab research scientist and architect Behnaz Farahi, and Fiorenzo Omenetto, principal investigator and director of The Tufts Silk Lab and the Frank C. Doble Professor of Engineering at Tufts University and a professor in the Biomedical Engineering Department and in the Department of Physics at Tufts.

Beyond the three themed tracks, the festival comprised an eclectic mix of interactive events and panels. Cambridge Public Library hosted a “Science Story Slam” with high-school students from 10 different states competing for $5,000 in prize money. Entrants shared 5-minute-long stories about their adventures in STEM, with topics ranging from probability to “astro-agriculture.” Judges included several MIT faculty and staff, as well as New York Times national correspondent Kate Zernike.

Elsewhere, the MIT Museum’s Gorman moderated a discussion on AI and democracy that included Audrey Tang, the former minister of digital affairs of Taiwan. The panelists explored how AI tools could combat the polarization of political discourse and increase participation in democratic processes, particularly for marginalized voices. Also in the MIT Museum, the McGovern Institute for Brain Research organized a “Decoding the Brain” event with demos involving real animal brains, while the Broad Institute of MIT and Harvard ran a “Discovery After Dark” event to commemorate the institute’s 20th anniversary. Sunday’s Science Carnival featured more than 100 demos, events, and activities, including the ever-popular “Robot Petting Zoo.”

When it first launched in 2007, the Cambridge Science Festival was by many accounts the first large-scale event of its kind across the entire United States. Similar festivals have since popped up all over the country, including the World Science Festival in New York City, the USA Science and Engineering Festival in Washington, the North Carolina Science Festival in Chapel Hill, and the San Diego Festival of Science and Engineering.  

More information about the festival is available online, including opportunities to participate in next year’s events. 

Implantable microparticles can deliver two cancer therapies at once

Patients with late-stage cancer often have to endure multiple rounds of different types of treatment, which can cause unwanted side effects and may not always help.

In hopes of expanding the treatment options for those patients, MIT researchers have designed tiny particles that can be implanted at a tumor site, where they deliver two types of therapy: heat and chemotherapy.

This approach could avoid the side effects that often occur when chemotherapy is given intravenously, and the synergistic effect of the two therapies may extend the patient’s lifespan longer than giving one treatment at a time. In a study of mice, the researchers showed that this therapy completely eliminated tumors in most of the animals and significantly prolonged their survival.

“One of the examples where this particular technology could be useful is trying to control the growth of really fast-growing tumors,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. “The goal would be to gain some control over these tumors for patients that don’t really have a lot of options, and this could either prolong their life or at least allow them to have a better quality of life during this period.”

Jaklenec is one of the senior authors of the new study, along with Angela Belcher, the James Mason Crafts Professor of Biological Engineering and Materials Science and Engineering and a member of the Koch Institute, and Robert Langer, an MIT Institute Professor and member of the Koch Institute. Maria Kanelli, a former MIT postdoc, is the lead author of the paper, which appears today in the journal ACS Nano.

Dual therapy

Patients with advanced tumors usually undergo a combination of treatments, including chemotherapy, surgery, and radiation. Phototherapy is a newer treatment that involves implanting or injecting particles that are heated with an external laser, raising their temperature enough to kill nearby tumor cells without damaging other tissue.

Current approaches to phototherapy in clinical trials make use of gold nanoparticles, which emit heat when exposed to near-infrared light.

The MIT team wanted to come up with a way to deliver phototherapy and chemotherapy together, which they thought could make the treatment process easier on the patient and might also have synergistic effects. They decided to use an inorganic material called molybdenum sulfide as the phototherapeutic agent. This material converts laser light to heat very efficiently, which means that low-powered lasers can be used.

To create a microparticle that could deliver both of these treatments, the researchers combined molybdenum disulfide nanosheets with either doxorubicin, a hydrophilic drug, or violacein, a hydrophobic drug. To make the particles, molybdenum disulfide and the chemotherapeutic are mixed with a polymer called polycaprolactone and then dried into a film that can be pressed into microparticles of different shapes and sizes.

For this study, the researchers created cubic particles with a width of 200 micrometers. Once injected into a tumor site, the particles remain there throughout the treatment. During each treatment cycle, an external near-infrared laser is used to heat up the particles. This laser can penetrate to a depth of a few millimeters to centimeters, with a local effect on the tissue.

“The advantage of this platform is that it can act on demand in a pulsatile manner,” Kanelli says. “You administer it once through an intratumoral injection, and then using an external laser source you can activate the platform, release the drug, and at the same time achieve thermal ablation of the tumor cells.”

To optimize the treatment protocol, the researchers used machine-learning algorithms to figure out the laser power, irradiation time, and concentration of the phototherapeutic agent that would lead to the best outcomes.

That led them to design a laser treatment cycle that lasts for about three minutes. During that time, the particles are heated to about 50 degrees Celsius, which is hot enough to kill tumor cells. Also at this temperature, the polymer matrix within the particles begins to melt, releasing some of the chemotherapy drug contained within the matrix.

“This machine-learning-optimized laser system really allows us to deploy low-dose, localized chemotherapy by leveraging the deep tissue penetration of near-infrared light for pulsatile, on-demand photothermal therapy. This synergistic effect results in low systemic toxicity compared to conventional chemotherapy regimens,” says Neelkanth Bardhan, a Break Through Cancer research scientist in the Belcher Lab, and second author of the paper.

Eliminating tumors

The researchers tested the microparticle treatment in mice that were injected with an aggressive type of cancer cells from triple-negative breast tumors. Once tumors formed, the researchers implanted about 25 microparticles per tumor, and then performed the laser treatment three times, with three days in between each treatment.

“This is a powerful demonstration of the usefulness of near-infrared-responsive material systems,” says Belcher, who, along with Bardhan, has previously worked on near-infrared imaging systems for diagnostic and treatment applications in ovarian cancer. “Controlling the drug release at timed intervals with light, after just one dose of particle injection, is a game changer for less painful treatment options and can lead to better patient compliance.”

In mice that received this treatment, the tumors were completely eradicated, and the mice lived much longer than those that were given either chemotherapy or phototherapy alone, or no treatment. Mice that underwent all three treatment cycles also fared much better than those that received just one laser treatment.

The polymer used to make the particles is biocompatible and has already been FDA-approved for medical devices. The researchers now hope to test the particles in larger animal models, with the goal of eventually evaluating them in clinical trials. They expect that this treatment could be useful for any type of solid tumor, including metastatic tumors.

The research was funded by the Bodossaki Foundation, the Onassis Foundation, a Mazumdar-Shaw International Oncology Fellowship, a National Cancer Institute Fellowship, and the Koch Institute Support (core) Grant from the National Cancer Institute.