Engineers 3D print sturdy glass bricks for building structures

What if construction materials could be put together and taken apart as easily as LEGO bricks? Such reconfigurable masonry would be disassembled at the end of a building’s lifetime and reassembled into a new structure, in a sustainable cycle that could supply generations of buildings using the same physical building blocks.

That’s the idea behind circular construction, which aims to reuse and repurpose a building’s materials whenever possible, to minimize the manufacturing of new materials and reduce the construction industry’s “embodied carbon,” which refers to the greenhouse gas emissions associated with every process throughout a building’s construction, from manufacturing to demolition.

Now MIT engineers, motivated by circular construction’s eco potential, are developing a new kind of reconfigurable masonry made from 3D-printed, recycled glass. Using a custom 3D glass printing technology provided by MIT spinoff Evenline, the team has made strong, multilayered glass bricks, each in the shape of a figure eight, that are designed to interlock, much like LEGO bricks.

In mechanical testing, a single glass brick withstood pressures similar to that of a concrete block. As a structural demonstration, the researchers constructed a wall of interlocking glass bricks. They envision that 3D-printable glass masonry could be reused many times over as recyclable bricks for building facades and internal walls.

Video thumbnail

Play video

Video: Courtesy of Evenline

“Glass is a highly recyclable material,” says Kaitlyn Becker, assistant professor of mechanical engineering at MIT. “We’re taking glass and turning it into masonry that, at the end of a structure’s life, can be disassembled and reassembled into a new structure, or can be stuck back into the printer and turned into a completely different shape. All this builds into our idea of a sustainable, circular building material.”

“Glass as a structural material kind of breaks people’s brains a little bit,” says Michael Stern, a former MIT graduate student and researcher in both MIT’s Media Lab and Lincoln Laboratory, who is also founder and director of Evenline. “We’re showing this is an opportunity to push the limits of what’s been done in architecture.”

Becker and Stern, with their colleagues, detail their glass brick design in a study appearing today in the journal Glass Structures and Engineering. Their MIT co-authors include lead author Daniel Massimino and Charlotte Folinus, along with Ethan Townsend at Evenline.

Lock step

The inspiration for the new circular masonry design arose partly in MIT’s Glass Lab, where Becker and Stern, then undergraduate students, first learned the art and science of blowing glass.

“I found the material fascinating,” says Stern, who later designed a 3D printer capable of printing molten recycled glass — a project he took on while studying in the mechanical engineering department. “I started thinking of how glass printing can find its place and do interesting things, construction being one possible route.”

Meanwhile, Becker, who accepted a faculty position at MIT, began exploring the intersection of manufacturing and design, and ways to develop new processes that enable innovative designs.

“I get excited about expanding design and manfucaturing spaces for challenging materials with interesting characteristics, like glass and its optical properties and recyclability,” Becker says. “As long as it’s not contaminated, you can recycle glass almost infinitely.”

She and Stern teamed up to see whether and how 3D-printable glass could be made into a structural masonry unit as sturdy and stackable as traditional bricks. For their new study, the team used the Glass 3D Printer 3 (G3DP3), the latest version of Evenline’s glass printer, which pairs with a furnace to melt crushed glass bottles into a molten, printable form that the printer then deposits in layered patterns.

The team printed prototype glass bricks using soda-lime glass that is typically used in a glassblowing studio. They incorporated two round pegs onto each printed brick, similar to the studs on a LEGO brick. Like the toy blocks, the pegs enable bricks to interlock and assemble into larger structures. Another material placed between the bricks prevent scratches or cracks between glass surfaces but can be removed if a brick structure were to be dismantled and recycled, also allowing bricks to be remelted in the printer and formed into new shapes. The team decided to make the blocks into a figure-eight shape.

“With the figure-eight shape, we can constrain the bricks while also assembling them into walls that have some curvature,” Massimino says.

Stepping stones

The team printed glass bricks and tested their mechanical strength in an industrial hydraulic press that squeezed the bricks until they began to fracture. The researchers found that the strongest bricks were able to hold up to pressures that are comparable to what concrete blocks can withstand. Those strongest bricks were made mostly from printed glass, with a separately manufactured interlocking feature that attached to the bottom of the brick. These results suggest that most of a masonry brick could be made from printed glass, with an interlocking feature that could be printed, cast, or separately manufactured from a different material.

“Glass is a complicated material to work with,” Becker says. “The interlocking elements, made from a different material, showed the most promise at this stage.”

The group is looking into whether more of a brick’s interlocking feature could be made from printed glass, but doesn’t see this as a dealbreaker in moving forward to scale up the design. To demonstrate glass masonry’s potential, they constructed a curved wall of interlocking glass bricks. Next, they aim to build progressively bigger, self-supporting glass structures.

“We have more understanding of what the material’s limits are, and how to scale,” Stern says. “We’re thinking of stepping stones to buildings, and want to start with something like a pavilion — a temporary structure that humans can interact with, and that you could then reconfigure into a second design. And you could imagine that these blocks could go through a lot of lives.”

This research was supported, in part, by the Bose Research Grant Program and MIT’s Research Support Committee.

Enterprise LLM APIs: Top Choices for Powering LLM Applications in 2024

The race to dominate the enterprise AI space is accelerating with some major news recently. OpenAI’s ChatGPT now boasts over 200 million weekly active users, a increase from 100 million just a year ago. This incredible growth shows the increasing reliance on AI tools in enterprise…

MIT course helps researchers crack secrets of ancient pottery

Jennifer Meanwell carefully placed a pottery sherd — or broken fragment of ceramic — under the circular, diamond-coated blade of a benchtop saw.

“Cutting the sample is the first big step,” says Meanwell, a lecturer in the Department of Materials Science and Engineering at MIT. She was leading a lab in making thin sections of pottery for petrographic analysis, a method used to examine ceramics and determine their composition, structure, and origins.

“You want a slice that’s thin enough to work with but thick enough to maintain its structure through the rest of the process.”

The lab was part of a summer intensive course at MIT for PhD students and early-career researchers in ceramic petrography, a specialized skill in archaeology. The course focuses on using optical microscopy to characterize pottery from ancient civilizations, revealing information about manufacturing techniques and provenance.

Twelve students from North America, Europe, Asia, and Australia participated in the three-week course in June to develop advanced skills, enriching students’ understanding of ancient ceramics and their broader historical and cultural contexts. It included morning seminars in mineralogy and archaeological theory and hands-on laboratories to identify and characterize materials, understand how they were manufactured, and infer what they were most likely used for.

Meanwell and Senior Technical Instructor William Gilstrap taught the group how to examine pottery samples collected from around the world — Greece, Mexico, and the Middle East — using polarized light microscopes to examine the materials.

“Polarized light will transmit through a mineral at 30 microns in a predictable manner — it interacts with its structure, and the optical properties help us identify which mineral types they are,” says Gilstrap. By determining the minerals, researchers can link them to the geological landscape they came from. “This helps us know more about how people interacted with their environments, and perhaps, how people transferred knowledge on time and space.”

Hands-on training

The course builds on the two-semester-long class Materials in Ancient Societies, run by the Center for Materials Research in Archaeology and Ethnology (CMRAE), a consortium of eight Boston-area schools that provides training in archaeological and ethnographic materials. Few institutions globally teach ceramic petrography, and most provide short, one- to two-week courses.

Gilstrap highlighted the need for extended training. “It takes time to develop the skills to find the nuances in the structure as well as to learn mineralogy, geology, and the manufacturing techniques of ceramics,” Gilstrap says.

Students learn to reconstruct the production methods of past ceramics, from cooking pots to roof tiles, by examining the underlying structure of materials to determine how they were made. For example, they can identify whether a vessel was crafted by pinching, a technique in which a potter presses into a ball of clay to form indentations, or coiling, which involves stacking rope-like strands of clay to build up the vessel’s walls. This analysis can reveal production, transport, and consumption patterns.

“We can see where things are made. We can see where things ended up and direction of exchange. And that’s the basics of an economy,” says Gilstrap.

The course blends sciences and humanities, covering basic chemistry, geology, and anthropological theory. Students also learn how to make their own petrographic thin sections — slices of pottery impregnated in epoxy and mounted on glass slides. These sections are essential for microscopic analysis of the ceramic’s composition and structure. Most researchers, however, typically do not make their own thin sections. Instead, they send their samples to specialized labs, where the preparation process costs approximately $45 per sample.

“When you have 300 samples, that gets costly,” Gilstrap adds.

Applying new skills

This practical experience resonated with Jean Paul Rojas and Michelle Young, from Vanderbilt University’s anthropology department. As did all the students, they brought in their own slides for analysis. Theirs were made by a colleague two decades ago.

“These have never been petrographically analyzed, so it would be the first time looking at them and trying to identify the petro groups,” says Rojas, a PhD student in archaeology. His research focuses on human migration, exchange, and movement in the Caribbean, particularly the mineralogical origins of ceramics.

Before the MIT summer course, Rojas had little training in geology or mineralogy. Two weeks in, he joked, “I know what rocks are now.”

“Now I feel like I know how to really look at all these different minerals, the feldspars and the quartz and the plagioclase — the different types of feldspars — the micas, and I can identify them and make something useful out of it.”

Young is an assistant professor in Vanderbilt’s anthropology department and Rojas’ thesis advisor. She’s always had an interest in materials science and ceramics, and she’s collaborated with a petrographer in the past.

“But in order to truly understand the data, I needed an introduction into the technique,” Young says.

When she returns to Vanderbilt, she plans on including petrography as one of the techniques featured in a lab sciences course for non-science majors.

“I am hoping at some point that I will eventually publish on petrographic results, or at least use the technique as a very preliminary way of grouping different ceramics,” Young says.

Another summer course student, Anna Pineda, a PhD candidate from the Philippines studying at the Australian National University, is analyzing jar burial sites in the islands and archipelagos between Southeast Asia and the Pacific Ocean. She’s particularly interested in understanding how mineral analysis techniques in geology can inform archaeology.

“When I talk to geologists, they can’t really get what I want to do unless they have an archeological background,” Pineda said. “It’s good to have a perspective from people who do archaeology.”

Pineda plans to incorporate knowledge gained from the course into her PhD research.

“Hopefully, I can get better results out of research on materials that have never been studied yet, using methods that aren’t commonly applied, in Island Southeast Asia.”

PTZOptics AutoTracking PTZs & Dance Team Works! – Videoguys

In his recent blog for Vista Today, Mark Hostutler highlights an exciting collaboration between West Chester Dance Works and Downingtown-based tech innovator PTZOptics, bringing local talent and cutting-edge technology together in a stunning video production. Featuring dancers Audrey Hammitt, Carlijn de Bruijn, and Inaijah Meaux-Hall, the project showcases the precision of PTZOptics’ auto-tracking cameras, which flawlessly capture each dancer’s movement. This collaboration merges creative artistry with advanced video production technology, offering a captivating visual experience.

PTZOptics, a tech company based in Pennsylvania, is known for its award-winning video production solutions. By using its state-of-the-art studio and advanced camera technology, PTZOptics helped West Chester Dance Works create a video that not only highlights the dancers’ talents but also demonstrates the power of auto-tracking cameras. With over 50 local professionals dedicated to innovation, PTZOptics continues to push the boundaries of video production technology.

Mark Hostutler’s article underscores how the partnership between West Chester Dance Works and PTZOptics showcases what’s possible when art and technology converge. This collaboration is not just a celebration of local talent but also an example of how PTZOptics’ industry-leading video equipment is revolutionizing the way performance art is captured and shared. West Chester Dance Works and PTZOptics are setting a new standard for creative and technical partnerships in the video production world.

Read the full article by Mark Hostutler for Vista Today HERE

Learn more about PTZOptics below:

Tech industry giants urge EU to streamline AI regulations

Meta has spearheaded an open letter calling for urgent reform of AI regulations in the EU. The letter, which garnered support from over 50 prominent companies – including Ericsson, SAP, and Spotify – was published as an advert in the Financial Times. The collective voice of…

New AI JetPack accelerates the entrepreneurial process

Apple co-founder Steve Jobs described the computer as a bicycle for the mind. What the Martin Trust Center for MIT Entrepreneurship just launched has a bit more horsepower.

“Maybe it’s not a Ferrari yet, but we have a car,” says Bill Aulet, the center’s managing director. The vehicle: the MIT Entrepreneurship JetPack, a generative artificial intelligence tool trained on Aulet’s 24-step Disciplined Entrepreneurship framework to input prompts into large language models.

Introduce a startup idea to the Eship JetPack, “and it’s like having five or 10 or 12 MIT undergraduates who instantaneously run out and do all the research you want based on the question you asked, and then they bring back the answer,” Aulet says.

The tool is currently being used by entrepreneurship students and piloted outside MIT, and there is a waitlist that prospective users can join. The tool is accessed through the Trust Center’s Orbit digital entrepreneurship platform, which was launched for student use in 2019. Orbit grew out of a need for an alternative to the static Trust Center website, Aulet says.

“We weren’t following our own protocols of entrepreneurship,” he says. “You meet the students where they are, and more and more of them were on their phones. I said, ‘Let’s build an app that’s more dynamic than a static website, and that will be the way that we can get to the students.”

With the help of Trust Center Executive Director Paul Cheek and Product Lead Doug Williams, Orbit has become a one-stop shop for student entrepreneurs. On the platform’s back end, leaders at the center are able to see what users are and are not clicking on.

Aulet and his team have been studying that user information since Orbit’s launch. It’s enabled them to learn how students want to access information, not just about course offerings or startup competition applications but also to get guidance on an idea they’re working on or connect to an entrepreneurial community of co-founders and advisers. The team also received advice from Ethan Mollick SM ’04, PhD ’10, an associate professor of management at the Wharton School and author of a new book, “Co-Intelligence: Living and Working With AI.”

Official work on the Eship JetPack began about six months ago. The name was inspired by the acceleration a jet pack provides, and the need for a human to take advantage of the boost and guide its direction.

“As we moved from our initial focus on capturing information to providing guidance, MIT’s Disciplined Entrepreneurship and Startup Tactics frameworks were the perfect place to start,” Williams says.

One of the earliest beta users, Shari Van Cleave, MBA ’15, demonstrated how to use the AI tool in a YouTube video.

She submitted an experimental idea for mobile electric vehicle charging, and within seconds the AI tool suggested market segments, beachhead markets, a business model, pricing, assumptions, testing, and a product plan — and that’s only seven of the 24 steps of the Disciplined Entrepreneurship framework that she explored.

“I was impressed by how quickly the AI, with just a few details, generated recommendations for everything from market-sizing (TAM) to lifetime customer value models,” Van Cleave said in an email. “Having a high-quality rough draft means founders, whether new or experienced, can execute and fundraise faster.”

And for those entrepreneurs who might already have an idea and be well on their way through the 24-step process, the tool can be useful for them, too, Aulet says. For example, they might want insights and quotes about how their company can improve its performance or determine whether there’s a better market to be targeting.

“Our goal is to lift the field of entrepreneurship, and a tool like this would allow more people to be entrepreneurs, and be better entrepreneurs,” Aulet says.

AI model can reveal the structures of crystalline materials

For more than 100 years, scientists have been using X-ray crystallography to determine the structure of crystalline materials such as metals, rocks, and ceramics.

This technique works best when the crystal is intact, but in many cases, scientists have only a powdered version of the material, which contains random fragments of the crystal. This makes it more challenging to piece together the overall structure.

MIT chemists have now come up with a new generative AI model that can make it much easier to determine the structures of these powdered crystals. The prediction model could help researchers characterize materials for use in batteries, magnets, and many other applications.

“Structure is the first thing that you need to know for any material. It’s important for superconductivity, it’s important for magnets, it’s important for knowing what photovoltaic you created. It’s important for any application that you can think of which is materials-centric,” says Danna Freedman, the Frederick George Keyes Professor of Chemistry at MIT.

Freedman and Jure Leskovec, a professor of computer science at Stanford University, are the senior authors of the new study, which appears today in the Journal of the American Chemical Society. MIT graduate student Eric Riesel and Yale University undergraduate Tsach Mackey are the lead authors of the paper.

Distinctive patterns

Crystalline materials, which include metals and most other inorganic solid materials, are made of lattices that consist of many identical, repeating units. These units can be thought of as “boxes” with a distinctive shape and size, with atoms arranged precisely within them.

When X-rays are beamed at these lattices, they diffract off atoms with different angles and intensities, revealing information about the positions of the atoms and the bonds between them. Since the early 1900s, this technique has been used to analyze materials, including biological molecules that have a crystalline structure, such as DNA and some proteins.

For materials that exist only as a powdered crystal, solving these structures becomes much more difficult because the fragments don’t carry the full 3D structure of the original crystal.

“The precise lattice still exists, because what we call a powder is really a collection of microcrystals. So, you have the same lattice as a large crystal, but they’re in a fully randomized orientation,” Freedman says.

For thousands of these materials, X-ray diffraction patterns exist but remain unsolved. To try to crack the structures of these materials, Freedman and her colleagues trained a machine-learning model on data from a database called the Materials Project, which contains more than 150,000 materials. First, they fed tens of thousands of these materials into an existing model that can simulate what the X-ray diffraction patterns would look like. Then, they used those patterns to train their AI model, which they call Crystalyze, to predict structures based on the X-ray patterns.

The model breaks the process of predicting structures into several subtasks. First, it determines the size and shape of the lattice “box” and which atoms will go into it. Then, it predicts the arrangement of atoms within the box. For each diffraction pattern, the model generates several possible structures, which can be tested by feeding the structures into a model that determines diffraction patterns for a given structure.

“Our model is generative AI, meaning that it generates something that it hasn’t seen before, and that allows us to generate several different guesses,” Riesel says. “We can make a hundred guesses, and then we can predict what the powder pattern should look like for our guesses. And then if the input looks exactly like the output, then we know we got it right.”

Solving unknown structures

The researchers tested the model on several thousand simulated diffraction patterns from the Materials Project. They also tested it on more than 100 experimental diffraction patterns from the RRUFF database, which contains powdered X-ray diffraction data for nearly 14,000 natural crystalline minerals, that they had held out of the training data. On these data, the model was accurate about 67 percent of the time. Then, they began testing the model on diffraction patterns that hadn’t been solved before. These data came from the Powder Diffraction File, which contains diffraction data for more than 400,000 solved and unsolved materials.

Using their model, the researchers came up with structures for more than 100 of these previously unsolved patterns. They also used their model to discover structures for three materials that Freedman’s lab created by forcing elements that do not react at atmospheric pressure to form compounds under high pressure. This approach can be used to generate new materials that have radically different crystal structures and physical properties, even though their chemical composition is the same.

Graphite and diamond — both made of pure carbon — are examples of such materials. The materials that Freedman has developed, which each contain bismuth and one other element, could be useful in the design of new materials for permanent magnets.

“We found a lot of new materials from existing data, and most importantly, solved three unknown structures from our lab that comprise the first new binary phases of those combinations of elements,” Freedman says.

Being able to determine the structures of powdered crystalline materials could help researchers working in nearly any materials-related field, according to the MIT team, which has posted a web interface for the model at crystalyze.org.

The research was funded by the U.S. Department of Energy and the National Science Foundation.