The Friday Roundup – A.I. Tools in Reality & Keyboard Shortcuts

YouTube Shorts in Minutes with Filmora 14 AI Smart Short Clips The video below is what appears to be a straightforward demonstration of using a feature in Filmora to automatically create a bunch of short videos from one long form video…BUT! It’s time for a little…

What do we know about the economics of AI?

For all the talk about artificial intelligence upending the world, its economic effects remain uncertain. There is massive investment in AI but little clarity about what it will produce.

Examining AI has become a significant part of Nobel-winning economist Daron Acemoglu’s work. An Institute Professor at MIT, Acemoglu has long studied the impact of technology in society, from modeling the large-scale adoption of innovations to conducting empirical studies about the impact of robots on jobs.

In October, Acemoglu also shared the 2024 Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel with two collaborators, Simon Johnson PhD ’89 of the MIT Sloan School of Management and James Robinson of the University of Chicago, for research on the relationship between political institutions and economic growth. Their work shows that democracies with robust rights sustain better growth over time than other forms of government do.

Since a lot of growth comes from technological innovation, the way societies use AI is of keen interest to Acemoglu, who has published a variety of papers about the economics of the technology in recent months.

“Where will the new tasks for humans with generative AI come from?” asks Acemoglu. “I don’t think we know those yet, and that’s what the issue is. What are the apps that are really going to change how we do things?”

What are the measurable effects of AI?

Since 1947, U.S. GDP growth has averaged about 3 percent annually, with productivity growth at about 2 percent annually. Some predictions have claimed AI will double growth or at least create a higher growth trajectory than usual. By contrast, in one paper, “The Simple Macroeconomics of AI,” published in the August issue of Economic Policy, Acemoglu estimates that over the next decade, AI will produce a “modest increase” in GDP between 1.1 to 1.6 percent over the next 10 years, with a roughly 0.05 percent annual gain in productivity.

Acemoglu’s assessment is based on recent estimates about how many jobs are affected by AI, including a 2023 study by researchers at OpenAI, OpenResearch, and the University of Pennsylvania, which finds that about 20 percent of U.S. job tasks might be exposed to AI capabilities. A 2024 study by researchers from MIT FutureTech, as well as the Productivity Institute and IBM, finds that about 23 percent of computer vision tasks that can be ultimately automated could be profitably done so within the next 10 years. Still more research suggests the average cost savings from AI is about 27 percent.

When it comes to productivity, “I don’t think we should belittle 0.5 percent in 10 years. That’s better than zero,” Acemoglu says. “But it’s just disappointing relative to the promises that people in the industry and in tech journalism are making.”

To be sure, this is an estimate, and additional AI applications may emerge: As Acemoglu writes in the paper, his calculation does not include the use of AI to predict the shapes of proteins — for which other scholars subsequently shared a Nobel Prize in October.

Other observers have suggested that “reallocations” of workers displaced by AI will create additional growth and productivity, beyond Acemoglu’s estimate, though he does not think this will matter much. “Reallocations, starting from the actual allocation that we have, typically generate only small benefits,” Acemoglu says. “The direct benefits are the big deal.”

He adds: “I tried to write the paper in a very transparent way, saying what is included and what is not included. People can disagree by saying either the things I have excluded are a big deal or the numbers for the things included are too modest, and that’s completely fine.”

Which jobs?

Conducting such estimates can sharpen our intuitions about AI. Plenty of forecasts about AI have described it as revolutionary; other analyses are more circumspect. Acemoglu’s work helps us grasp on what scale we might expect changes.

“Let’s go out to 2030,” Acemoglu says. “How different do you think the U.S. economy is going to be because of AI? You could be a complete AI optimist and think that millions of people would have lost their jobs because of chatbots, or perhaps that some people have become super-productive workers because with AI they can do 10 times as many things as they’ve done before. I don’t think so. I think most companies are going to be doing more or less the same things. A few occupations will be impacted, but we’re still going to have journalists, we’re still going to have financial analysts, we’re still going to have HR employees.”

If that is right, then AI most likely applies to a bounded set of white-collar tasks, where large amounts of computational power can process a lot of inputs faster than humans can.

“It’s going to impact a bunch of office jobs that are about data summary, visual matching, pattern recognition, et cetera,” Acemoglu adds. “And those are essentially about 5 percent of the economy.”

While Acemoglu and Johnson have sometimes been regarded as skeptics of AI, they view themselves as realists.

“I’m trying not to be bearish,” Acemoglu says. “There are things generative AI can do, and I believe that, genuinely.” However, he adds, “I believe there are ways we could use generative AI better and get bigger gains, but I don’t see them as the focus area of the industry at the moment.”

Machine usefulness, or worker replacement?

When Acemoglu says we could be using AI better, he has something specific in mind.

One of his crucial concerns about AI is whether it will take the form of “machine usefulness,” helping workers gain productivity, or whether it will be aimed at mimicking general intelligence in an effort to replace human jobs. It is the difference between, say, providing new information to a biotechnologist versus replacing a customer service worker with automated call-center technology. So far, he believes, firms have been focused on the latter type of case. 

“My argument is that we currently have the wrong direction for AI,” Acemoglu says. “We’re using it too much for automation and not enough for providing expertise and information to workers.”

Acemoglu and Johnson delve into this issue in depth in their high-profile 2023 book “Power and Progress” (PublicAffairs), which has a straightforward leading question: Technology creates economic growth, but who captures that economic growth? Is it elites, or do workers share in the gains?

As Acemoglu and Johnson make abundantly clear, they favor technological innovations that increase worker productivity while keeping people employed, which should sustain growth better.

But generative AI, in Acemoglu’s view, focuses on mimicking whole people. This yields something he has for years been calling “so-so technology,” applications that perform at best only a little better than humans, but save companies money. Call-center automation is not always more productive than people; it just costs firms less than workers do. AI applications that complement workers seem generally on the back burner of the big tech players.

“I don’t think complementary uses of AI will miraculously appear by themselves unless the industry devotes significant energy and time to them,” Acemoglu says.

What does history suggest about AI?

The fact that technologies are often designed to replace workers is the focus of another recent paper by Acemoglu and Johnson, “Learning from Ricardo and Thompson: Machinery and Labor in the Early Industrial Revolution — and in the Age of AI,” published in August in Annual Reviews in Economics.

The article addresses current debates over AI, especially claims that even if technology replaces workers, the ensuing growth will almost inevitably benefit society widely over time. England during the Industrial Revolution is sometimes cited as a case in point. But Acemoglu and Johnson contend that spreading the benefits of technology does not happen easily. In 19th-century England, they assert, it occurred only after decades of social struggle and worker action.

“Wages are unlikely to rise when workers cannot push for their share of productivity growth,” Acemoglu and Johnson write in the paper. “Today, artificial intelligence may boost average productivity, but it also may replace many workers while degrading job quality for those who remain employed. … The impact of automation on workers today is more complex than an automatic linkage from higher productivity to better wages.”

The paper’s title refers to the social historian E.P Thompson and economist David Ricardo; the latter is often regarded as the discipline’s second-most influential thinker ever, after Adam Smith. Acemoglu and Johnson assert that Ricardo’s views went through their own evolution on this subject.

“David Ricardo made both his academic work and his political career by arguing that machinery was going to create this amazing set of productivity improvements, and it would be beneficial for society,” Acemoglu says. “And then at some point, he changed his mind, which shows he could be really open-minded. And he started writing about how if machinery replaced labor and didn’t do anything else, it would be bad for workers.”

This intellectual evolution, Acemoglu and Johnson contend, is telling us something meaningful today: There are not forces that inexorably guarantee broad-based benefits from technology, and we should follow the evidence about AI’s impact, one way or another.

What’s the best speed for innovation?

If technology helps generate economic growth, then fast-paced innovation might seem ideal, by delivering growth more quickly. But in another paper, “Regulating Transformative Technologies,” from the September issue of American Economic Review: Insights, Acemoglu and MIT doctoral student Todd Lensman suggest an alternative outlook. If some technologies contain both benefits and drawbacks, it is best to adopt them at a more measured tempo, while those problems are being mitigated.

“If social damages are large and proportional to the new technology’s productivity, a higher growth rate paradoxically leads to slower optimal adoption,” the authors write in the paper. Their model suggests that, optimally, adoption should happen more slowly at first and then accelerate over time.

“Market fundamentalism and technology fundamentalism might claim you should always go at the maximum speed for technology,” Acemoglu says. “I don’t think there’s any rule like that in economics. More deliberative thinking, especially to avoid harms and pitfalls, can be justified.”

Those harms and pitfalls could include damage to the job market, or the rampant spread of misinformation. Or AI might harm consumers, in areas from online advertising to online gaming. Acemoglu examines these scenarios in another paper, “When Big Data Enables Behavioral Manipulation,” forthcoming in American Economic Review: Insights; it is co-authored with Ali Makhdoumi of Duke University, Azarakhsh Malekian of the University of Toronto, and Asu Ozdaglar of MIT.

“If we are using it as a manipulative tool, or too much for automation and not enough for providing expertise and information to workers, then we would want a course correction,” Acemoglu says.

Certainly others might claim innovation has less of a downside or is unpredictable enough that we should not apply any handbrakes to it. And Acemoglu and Lensman, in the September paper, are simply developing a model of innovation adoption.

That model is a response to a trend of the last decade-plus, in which many technologies are hyped are inevitable and celebrated because of their disruption. By contrast, Acemoglu and Lensman are suggesting we can reasonably judge the tradeoffs involved in particular technologies and aim to spur additional discussion about that.

How can we reach the right speed for AI adoption?

If the idea is to adopt technologies more gradually, how would this occur?

First of all, Acemoglu says, “government regulation has that role.” However, it is not clear what kinds of long-term guidelines for AI might be adopted in the U.S. or around the world.

Secondly, he adds, if the cycle of “hype” around AI diminishes, then the rush to use it “will naturally slow down.” This may well be more likely than regulation, if AI does not produce profits for firms soon.

“The reason why we’re going so fast is the hype from venture capitalists and other investors, because they think we’re going to be closer to artificial general intelligence,” Acemoglu says. “I think that hype is making us invest badly in terms of the technology, and many businesses are being influenced too early, without knowing what to do. We wrote that paper to say, look, the macroeconomics of it will benefit us if we are more deliberative and understanding about what we’re doing with this technology.”

In this sense, Acemoglu emphasizes, hype is a tangible aspect of the economics of AI, since it drives investment in a particular vision of AI, which influences the AI tools we may encounter.

“The faster you go, and the more hype you have, that course correction becomes less likely,” Acemoglu says. “It’s very difficult, if you’re driving 200 miles an hour, to make a 180-degree turn.”

Arik Solomon, Co-Founder & CEO of Cypago – Interview Series

Arik Solomon, Co-Founder and CEO of Cypago, is on a mission to eliminate the hassle of compliance for businesses. Cypago’s Cyber GRC Automation Platform transforms the traditionally manual, time-consuming process of meeting security standards into an efficient, AI-driven workflow. By integrating with existing software stacks, Cypago…

Utilizing AI to Predict and Prevent Internet Outages

Seamless user experience is the service benchmark for any internet provider as the demand for fewer service disruptions and greater reliable connection grows. To address this need, artificial intelligence (AI) has emerged as an evolving technology that ensures improved service across regions. How Does AI Improve…

AlphaQubit: Solving Quantum Computing’s Most Pressing Challenge

Quantum computing has the potential to change many industries, from cryptography to drug discovery. But scaling these systems is a challenging task. As quantum computers grow, they face more errors and noise that can disrupt the calculations. To address this, DeepMind and Quantum AI introduced AlphaQubit,…

Women’s cross country runs to first NCAA Division III National Championship

Behind All-American performances from senior Christina Crow and juniors Rujuta Sane and Kate Sanderson, the MIT women’s cross country team claimed its first NCAA Division III National Championship on Nov. 23 at the LaVern Gibson Cross Country Course in Indiana.

MIT entered the race as the No. 1 ranked team in the nation after winning its 17th straight NEWMAC conference title and its fourth straight NCAA East Regional Championship in 2024. The Engineers completed a historic season with a run for the record books, taking first in the 6K race to win their first national championship.

The Engineers got out to an early advantage over the University of Chicago through the opening kilometer of the 6K race, with Sanderson among the leaders on the course in seventh place. MIT had all five scoring runners inside the top 30 early in the race.

It was still MIT and the University of Chicago leading the way at the 3K mark, but the Maroons closed the gap on the Engineers, as senior Evelyn Battleson-Gunkel moved toward the front of the pack. MIT’s top seven spread from 14th to 32nd through the 3K mark, showing off the team depth that powered the Engineers throughout the season.

Despite MIT’s early advantage, it was Chicago that had the team lead at the 5K mark, as the top five Maroons on the course spread from 3rd to 34th place to drop Chicago’s team score to 119. Sanderson and Sane found the pace to lead the Engineers in 14th and 17th place, while Crow was in a tight race for the final All-American spot in 41st place, giving MIT a score of 137 at the 5K mark. 

The final 1K of Crow’s collegiate career pushed MIT’s lone senior into an All-American finish with a 35th place performance in 21:43.6. With Sanderson finishing in 21:26.2 to take 16th and Sane in 19th with a time of 21:29.9, sophomore Liv Girand and junior Lexi Fernandez closed in 47th and 51st place, respectively, rallying the Engineers past Chicago over the final 1K to clinch the national title for MIT.

Sanderson is now a two-time All-American after finishing in 34th place during the 2023 National Championship. Crow and Sane earned the honor for the first time. Sanderson and Sane each recorded collegiate personal records in the race. Girand finished with a time of 21:54.2 (47th) while Fernandez had a time of 21:57.6 (51st).

Sophomore Heather Jensen and senior Gillian Roeder helped MIT finish with all seven runners inside the top 55, as Jensen was 54th in 21:58.2 and Roeder was 55th in 21:59.6. MIT finished with an average time of 21:42.3 and a spread of 31.4.

Study: Browsing negative content online makes mental health struggles worse

People struggling with their mental health are more likely to browse negative content online, and in turn, that negative content makes their symptoms worse, according to a series of studies by researchers at MIT.

The group behind the research has developed a web plug-in tool to help those looking to protect their mental health make more informed decisions about the content they view.

The findings were outlined in an open-access paper by Tali Sharot, an adjunct professor of cognitive neurosciences at MIT and professor at University College London, and Christopher A. Kelly, a former visiting PhD student who was a member of Sharot’s Affective Brain Lab when the studies were conducted, who is now a postdoc at Stanford University’s Institute for Human Centered AI. The findings were published Nov. 21 in the journal Nature Human Behavior.

“Our study shows a causal, bidirectional relationship between health and what you do online. We found that people who already have mental health symptoms are more likely to go online and more likely to browse for information that ends up being negative or fearful,” Sharot says. “After browsing this content, their symptoms become worse. It is a feedback loop.”

The studies analyzed the web browsing habits of more than 1,000 participants by using natural language processing to calculate a negative score and a positive score for each web page visited, as well as scores for anger, fear, anticipation, trust, surprise, sadness, joy, and disgust. Participants also completed questionnaires to assess their mental health and indicated their mood directly before and after web-browsing sessions. The researchers found that participants expressed better moods after browsing less-negative web pages, and participants with worse pre-browsing moods tended to browse more-negative web pages.

In a subsequent study, participants were asked to read information from two web pages randomly selected from either six negative webpages or six neutral pages. They then indicated their mood levels both before and after viewing the pages. An analysis found that participants exposed to negative web pages reported to be in a worse mood than those who viewed neutral pages, and then subsequently visited more-negative pages when asked to browse the internet for 10 minutes.

“The results contribute to the ongoing debate regarding the relationship between mental health and online behavior,” the authors wrote. “Most research addressing this relationship has focused on the quantity of use, such as screen time or frequency of social media use, which has led to mixed conclusions. Here, instead, we focus on the type of content browsed and find that its affective properties are causally and bidirectionally related to mental health and mood.”

To test whether intervention could alter web-browsing choices and improve mood, the researchers provided participants with search engine results pages with three search results for each of several queries. Some participants were provided labels for each search result on a scale of “feel better” to “feel worse.” Other participants were not provided with any labels. Those who were provided with labels were less likely to choose negative content and more likely to choose positive content. A followup study found that those who viewed more positive content reported a significantly better mood.

Based on these findings, Sharot and Kelly created a downloadable plug-in tool called “Digital Diet” that offers scores for Google search results in three categories: emotion (whether people find the content positive or negative, on average), knowledge (to what extent information on a webpage helps people understand a topic, on average), and actionability (to what extent information on a webpage is useful on average). MIT electrical engineering and computer science graduate student Jonatan Fontanez ’24, a former undergraduate researcher from MIT in Sharot’s lab, also contributed to the development of the tool. The tool was introduced publicly this week, along with the publication of the paper in Nature Human Behavior.

“People with worse mental health tend to seek out more-negative and fear-inducing content, which in turn exacerbates their symptoms, creating a vicious feedback loop,” Kelly says. “It is our hope that this tool can help them gain greater autonomy over what enters their minds and break negative cycles.”

Chromia’s Asgard upgrade launches: “New era for DeFi and AI” – AI News

The Chromia blockchain development team has announced the successful completion of its Asgard mainnet upgrade that introduces new features and capabilities for the platform. The new features enhance the overall capacity of the Layer 1 blockchain and add specialised capabilities for users. The Asgard mainnet upgrade…

Amazon Bedrock gains new AI models, tools, and features

Amazon Web Services (AWS) has announced improvements to bolster Bedrock, its fully managed generative AI service. The updates include new foundational models from several AI pioneers, enhanced data processing capabilities, and features aimed at improving inference efficiency. Dr Swami Sivasubramanian, VP of AI and Data at…

Seen and heard: The new Edward and Joyce Linde Music Building

Until very recently, Mariano Salcedo, a fourth-year MIT electronic engineering and computer science student majoring in artificial intelligence and decision-making, was planning to apply for a master’s program in computer science at MIT. Then he saw the new Edward and Joyce Linde Music Building, which opened this fall for a selection of classes. “Now, instead of going into computer science, I’m thinking of applying for the master’s program in Music Technology, which is being offered here for the first time next year,” says Salcedo. “The decision is definitely linked to the building, and what the building says about music at MIT.” 
 
Scheduled to open fully in February 2025, the Linde Music Building already makes a bold and elegant visual statement. But its most powerful impact will likely be heard as much as seen. Each of the facility’s elements, including the Thomas Tull Concert Hall, every performance and rehearsal space, each classroom, even the stainless-steel metal panels that form the conic canopies over the cube-like building’s three entrances — has been conceived and constructed to create an ideal environment for music. 

Students are already enjoying the ideal acoustics and customized spaces of the Linde Music Building, even as construction on the site continues. Within the building’s thick red-brick walls, they study subjects ranging from Electronic Music Composition to Conducting and Score Reading to Advanced Music Performance. Myriad musical groups, from the MIT jazz combos to the Balinese Gamelan and the Rambax Senegalese Drum Ensemble, explore and enjoy their new and improved homes, as do those students who will create and perfect the next generation of music production hardware and software. 

“For many of us at MIT, music is very close to our hearts,” notes MIT President Sally Kornbluth. “And the new building now puts music right at the heart of the campus. Its exceptional practice and recording spaces will give MIT musicians the conservatory-level tools they deserve, and the beautiful performance hall will exert its own gravitational pull, drawing audiences from across campus and the larger community who love live music.”

The need and the solution

Music has never been a minor pursuit at MIT. More than 1,500 MIT students enroll in music classes each academic year. And more than 500 student musicians participate in one of 30 on-campus ensembles. Yet until recently there was no centralized facility for music instruction or rehearsal. Practice rooms were scattered and poorly insulated, with sound seeping through the walls. Nor was there a truly suitable space for large performances; while Kresge Auditorium has sufficient capacity and splendid minimalist aesthetics, the acoustics are not optimal.

“It would be very difficult to teach biology or engineering in a studio designed for dance or music,” says Jay Scheib, recently appointed section head for Music and Theater Arts and Class of 1949 Professor. “The same goes for teaching music in a mathematics or chemistry classroom. In the past, we’ve done it, but it did limit us. In our theater program, everything changed when we opened the new theater building (W97) in 2017 and could teach theater in spaces intended for theater. We believe the new music building will have a similar effect on our music program. It will inspire our students and musicians and allow them to hear their music as it was intended to be heard. And it will provide an opportunity to convene people, to inhabit the same space, breathe the same air, and exchange ideas and perspectives.”

“Music-making from multiple musical traditions are areas of tremendous growth at MIT, both in terms of performance and academics,” says Keeril Makan, associate dean for strategic initiatives for the School of Humanities, Arts, and Social Sciences (SHASS). The Michael (1949) and Sonja Koerner Music Composition Professor and former head of the Music and Theater Arts Section, Makan was, and remains, intimately involved in the Linde Music Building project. “In this building, we wanted all forms of music to coexist, whether jazz, classical, or music from around the world. This was not easy; different types of music require different conditions. But we took the time and invested in making spaces that would support all musical genres.”

The idea of creating an epicenter for music at MIT is not new. For several decades, MIT planners and administrators studied various plans and sites on campus, including Kendall Square and areas in West Campus. Then, in 2018, one year after the completion of the Theater Arts Building on Vassar Street, and with support from then-president L. Rafael Reif, the Institute received a cornerstone gift for the music building from arts patron Joyce Linde. Along with her late husband and former MIT Corporation member Edward H. Linde ’62, the late Joyce Linde was a longtime MIT supporter. SANAA, a Tokyo-based architectural firm, was selected for the job in April 2019.

“MIT chose SANAA in part because their architecture is so beautiful,” says Vasso Mathes, the senior campus planner in the MIT Office of Campus Planning who helped select the SANAA team. “But also because they understood that this building is about acoustics. And they brought the world’s most renowned acoustics consultant, Nagata Acoustics International founder Yasuhisa Toyota, to the project.”

Where form meets function

Built on the site of a former parking lot, the Linde Music Building is both stunning and subtle. Designed by Kazuyo Sejima and Ryue Nishizawa of SANAA, which won the 2010 Pritzker Architecture Prize, the three-volume red brick structure centers both the natural and built environments of MIT’s West Campus — harmonizing effortlessly with Eero Saarinen’s Kresge Auditorium and iconic MIT Chapel, both adjacent, while blending seamlessly with surrounding athletic fields and existing landscaping. With a total of 35,000 square feet of usable space, the building’s three distinct volumes dialogue beautifully with their surroundings. The curved roof reprises elements of Kresge Auditorium, while the exterior evokes Boston and Cambridge’s archetypal facades. The glass-walled lobby, where the three cubic volumes converge, is surprisingly intimate, with ample natural light and inviting views onto three distinct segments of campus. 

“One thing I love about this project is that each program has its own identity in form,” says co-founder and principal Ryue Nishizawa of SANAA. “And there are also in-between spaces that can breathe and blend inside and outside spaces, creating a landscape while preserving the singularity of each program.”

There are myriad signature features — particularly the acoustic features designed by Nagata Acoustics. The Beatrice and Stephen Erdely Music and Culture Space offers the building’s most robust acoustic insulation. Conceived as a home for MIT’s Rambax Senegalese Drum Ensemble and Balinese Gamelan — as well as other music ensembles — the high-ceilinged box-in-box rehearsal space features alternating curved wall panels. The first set reflects sound, the second set absorbs it. The two panel styles are virtually identical to the eye. 

With a maximum seating capacity of 390, the Thomas Tull Concert Hall features a suite of gently rising rows that circle a central performance area. The hall can be configured for almost any style and size of performance, from a soloist in the round to a full jazz ensemble. A retractable curtain, an overhanging ring of glass panels, and the same alternating series of curved wall panels offers adaptable and exquisite sound conditions for performers and audience. A season of events are planned for the spring, starting on Feb. 15, 2025, with a celebratory public program and concert. Classrooms, rehearsal spaces, and technical spaces in the Jae S. and Kyuho Lim Music Maker Pavilion — where students will develop state-of-the-art production tools, software, and musical instruments — are similarly outfitted to create a nearly ideal sound environment. 

While acoustic concerns drove the design process for the Linde Music Building, they did not dampen it. Architects, builders, and vendors repeatedly found ingenious and understated ways to infuse beauty into spaces conceived primarily around sound. “There are many technical specifications we had to consider and acoustic conditions we had to create,” says co-founder and principal Kazuyo Sejima of SANAA. “But we didn’t want this to be a purely technical building; rather, a building where people can enjoy creating and listening to music, enjoy coming together, in a space that was functional, but also elegant.”

Realized with sustainable methods and materials, the building features radiant-heat flooring, LED lighting, high-performance thermally broken windows, and a green roof on each volume. A new landscape and underground filters mitigate flood risk and treat rain and stormwater. A two-level 142-space parking garage occupies the space beneath the building. The outdoor scene is completed by Madrigal, a site-specific sculpture by Sanford Biggers. Commissioned by MIT, and administered by the List Visual Arts Center, the Percent-for-Art program selected Sanford Biggers through a committee formed for this project. The 18-foot metal, resin, and mixed-media piece references the African American quilting tradition, weaving, as in a choral composition, diverse patterns and voices into a colorful counterpoint. “Madrigal stands as a vibrant testament to the power of music, tradition, and the enduring spirit of collaboration across time,” says List Visual Arts Center director Paul Ha. “It connects our past and future while enriching our campus and inspiring all who encounter it.”

New harmonies

With a limited opening for classes this fall, the Linde Music Building is already humming with creative activity. There are hands-on workshops for the many sections of class 21M.030 (Introduction to Musics of the World) — one of SHASS’s most popular CI-H classes. Students of music technology hone their skills in digital instrument design and electronic music composition. MIT Balinese Gamelan and the drummers of Rambax enjoy the sublime acoustics of the Music and Culture Space, where they can hear and refine their work in exquisite detail. 

“It is exciting for me, and all the other students who love music, to be able to take classes in this space completely devoted to music and music technology,” says fourth-year student Mariano Salcedo. “To work in spaces that are made specifically for music and musicians … for us, it’s a nice way of being seen.”

The Linde Music Building will certainly help MIT musicians feel seen and heard. But it will also enrich the MIT experience for students in all schools and departments. “Music courses at MIT have been popular with students across disciplines. I’m incredibly thrilled that students will have brand-new, brilliantly designed spaces for performance, instruction, and prototyping,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of the School of Engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science. “The building will also offer tremendous opportunities for students to gather, build community, and innovate across disciplines.”

“This building and its three programs encapsulate the breadth of interest among our students,” says Melissa Nobles, MIT chancellor and Class of 1922 Professor of Political Science. Nobles was a steadfast advocate for the music building project. “It will strengthen our already-robust music community and will draw new people in.” 

The Linde Music Building has inspired other members of the MIT community. “Now faculty can use these truly wonderful spaces for their research,” says Makan. “The offices here are also studios, and have acoustic treatments and sound isolation. Musicians and music technologists can work in those spaces.” Makan is composing a piece for solo violin to be premiered in the Thomas Tull Concert Hall early next year. During the performance, student violinists will deploy strategically in various points about the hall to accompany the piece, taking full advantage of the space’s singular acoustics. 

Agustín Rayo, the Kenan Sahin Dean of the School of Humanities, Arts, and Social Sciences, expects the Linde Music Building to inspire people beyond the MIT community as well. “Of course this building brings incredible resources to MIT’s music program: top-quality rehearsal spaces, a professional-grade recording studio, and new labs for our music technology program,” he says “But the world-class concert hall will also create new opportunities to connect with people in the Boston area. This is truly a jewel of the MIT campus.”

February open house and concert

The MIT Music and Theater Arts Section plans to host an open house in the new building on Feb. 15, 2025. Members of the MIT community and the general public will be invited to an afternoon of activities and performances. The celebration of music will continue with a series of concerts open to the public throughout the spring. Details will be available at the Music and Theater Arts website.