Blockchain could solve the monopolised AI ecosystem | AI News

The AI industry has always been the “futuristic view” for humans, whether in movies, cartoons, or real life. Computers work, think and act on behalf of futuristic humans – well, except in the Dune movies. In the past half-decade, artificial intelligence has become the hottest topic…

UK backs smaller AI projects while scrapping major investments

The UK government has announced a £32 million investment in almost 100 cutting-edge AI projects across the country. However, this comes against the backdrop of a controversial decision by the new Labour government to scrap £1.3 billion in funding originally promised by the Conservatives for tech…

CISA’s “Secure by Demand” guidance is must-read – CyberTalk

EXECUTIVE SUMMARY:

Earlier today, the Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI), distributed a new “Secure by Demand” guide.

The intention is to assist organizations in driving a more secure technology ecosystem by ensuring that cyber security is embedded from the start.

“This guidance is a wake-up call for any company that missed out on the costs and outages caused by Solar Winds, Log4J, Snowflake and CrowdStrike,” says Check Point CISO Pete Nicoletti.

Why the guide

In cyber security, procurement teams tend to grasp the fundamentals of cyber security requirements in relation to tech acquisitions. However, teams often fail to identify whether or not vendors truly embed cyber security into development cycles from day one.

The guide is designed to help organizations discern this type of critical information when evaluating vendors. It provides readers with questions to ask when buying software, considerations to work through regarding product integration and security, along with assessment tools that allow for grading of a product’s maturity against “secure-by-design” principles.

More information

The Secure by Demand guide is a companion piece to the recently released Software Acquisition Guide for Government Enterprise Consumers: Software Assurance in the Cyber-Supply Chain Risk Management (C-SCRM) Lifecycle.

While the latter focuses on government enterprises, this guide broadens the scope to encompass a wider range of organizations across various sectors.

Key points to note

  • The two guides work in tandem to provide a comprehensive approach to secure software acquisition and supply chain risk management.
  • While the software acquisition guide targets government entities, the demand guide offers insights that are applicable to private sector organizations, non-profits and other institutions.

CISA strongly advises organizations to thoroughly review and implement the recommendations from both guides.

Each guide offers practical, actionable steps that can be integrated into existing procurement and risk management frameworks. Yet, that alone is not enough, according to Check Point Expert Pete Nicoletti…

“In addition to implementing this guidance, companies should add supply chain-related security events to their incident response planning and tabletop exercises to ensure they can recover quickly and with less impact. Further, review supplier contracts to ensure that expensive outages caused by them, offer up their cyber insurance, rather than just recovering the license cost,” he notes.

Get the Secure by Demand Guide: How Software Customers Can Drive a Secure Technology Ecosystem right here.

Lastly, to receive cyber security thought leadership articles, groundbreaking research and emerging threat analyses each week, subscribe to the CyberTalk.org newsletter.

Study: Flying keeps getting safer

Many airline passengers naturally worry about flying. But on a worldwide basis, commercial air travel keeps getting safer, according to a new study by MIT researchers. 

The risk of a fatality from commercial air travel was 1 per every 13.7 million passenger boardings globally in the 2018-2022 period — a significant improvement from 1 per 7.9 million boardings in 2008-2017 and a far cry from the 1 per every 350,000 boardings that occurred in 1968-1977, the study finds.

“Aviation safety continues to get better,” says Arnold Barnett, an MIT professor and co-author of a new paper detailing the research results.

“You might think there is some irreducible risk level we can’t get below,” adds Barnett, a leading expert in air travel safety and operations. “And yet, the chance of dying during an air journey keeps dropping by about 7 percent annually, and continues to go down by a factor of two every decade.”

To be sure, there are no guarantees of continual improvement; some recent near-collisions on runways in the U.S. have gained headlines in the last year, making it clear that airline safety is always an ongoing task.

Additionally, the Covid-19 pandemic may have caused a sizable — though presumably temporary — new risk stemming from flying. The study analyzes this risk but quantifies it separately from the long-term safety trend, which is based on accidents and deliberate attacks on aviation.

Overall, Barnett compares these long-run gains in air safety to “Moore’s Law,” the observation that innovators keep finding ways to double the computing power of chips roughly every 18 months. In this case, commercial air travel has gotten roughly twice as safe in each decade dating to the late 1960s.

“Here we have an aerial version of Moore’s Law,” says Barnett, who has helped refine air travel safety statistics for many years.

In per-boarding terms, passengers are about 39 times safer than they were in the 1968-1977 period.

The paper, “Airline safety: Still getting better?” appears in the August issue of the Journal of Air Transport Management. The authors are Barnett, who is the George Eastman Professor of Management Science at the MIT Sloan School of Management, and Jan Reig Torra MBA ’24, a former graduate student at MIT Sloan.

Covid-19 impact

The separate, additional finding about the impact of Covid-19 focuses on cases spread by airline passengers during the pandemic. This is not part of the top-line data, which evaluates airline incidents during normal operations. Still, Barnett thought it would also be valuable to explore the special case of viral transmission during the pandemic.

The study estimates that from June 2020 through February 2021, before vaccines were widely available, there were about 1,200 deaths in the U.S. from Covid-19 associated, directly or indirectly, with its transmission on passenger planes. Most of those fatalities would have involved not passengers but people who got Covid-19 from others who had been infected during air travel.

In addition, the study estimates that from March 2020 through December 2022, around 4,760 deaths around the globe were linked to the transmission of Covid-19 on airplanes. Those estimates are based on the best available data about transmission rates and daily death rates, and take account of the age distributions of air passengers during the pandemic. Perhaps surprisingly, older Americans do not seem to have flown less during the Covid-19 pandemic, even though their risks of death given infection were far higher than those of younger travelers.

“There’s no simple answer to this,” Barnett says. “But we worked to come up with realistic and conservative estimates, so that people can learn important lessons about what happened. I believe people should at least look at these numbers.”

Improved overall safety

Overall, to study fatalities during normal airline operations, the researchers used data from the Flight Safety Foundation, the World Bank, and the International Air Transport Association.

To evaluate air travel risks, experts have used a variety of metrics, including deaths per billion passenger miles, and fatal accidents per 100,000 flight hours. However, Barnett believes deaths per passenger boarding is the most “defensible” and understandable statistic, since it answers a simple question: If you have a boarding pass for a flight, what are your odds of dying? The statistic also includes incidents that might occur in airport terminals.

Having previously developed this metric, Barnett has now updated his findings multiple times, developing a comprehensive picture of air safety over time:

Commercial air travel fatalities per passenger boarding
1968-1977: 1 per 350,000
1978-1987: 1 per 750,000
1988-1997: 1 per 1.3 million
1998-2007: 1 per 2.7 million
2007-2017: 1 per 7.9 million
2018-2022: 1 per 13.7 million

As Barnett’s numbers show, these gains are not incidental improvements, but instead constitute a long-term trend. While the new paper is focused more on empirical outcomes than finding an explanation for them, Barnett suggests there is a combination of factors at work. These include technological advances, such as collision avoidance systems in planes; extensive training; and rigorous work by organizations such as the U.S. Federal Aviation Agency and the National Transportation Safety Board.

However, there are disparities in air travel safety globally. The study divides the world into three tiers of countries, based on their commercial air safety records. For countries in the third tier, there were 36.5 times as many fatalities per passenger boarding in 2018-2022 than was the case in the top tier. Thus, it is safer to fly in some parts of the world than in others.

The first tier of countries consists of the United States, the European Union countries, and other European states, including Montenegro, Norway, Switzerland, and the United Kingdom, as well as Australia, Canada, China, Israel, Japan, and New Zealand.

The second group consists of Bahrain, Bosnia, Brazil, Brunei, Chile, Hong Kong (which has been distinct from mainland China in air safety regulations), India, Jordan, Kuwait, Malaysia, Mexico, the Philippines, Qatar, Singapore, South Africa, South Korea, Taiwan, Thailand, Turkey, and the United Arab Emirates. In each of those two groups of nations, the death risk per boarding over 2018-22 was about 1 per 80 million.

The third group then consists of every other country in the world. Within the top two groups, there were 153 passenger fatalities in the 2018-2022 period, and one major accident, a China Eastern Airlines crash in 2022 that killed 123 passengers. The 30 other fatalities beyond that in the top two tiers stemmed from six other air accidents.

For countries in the third tier, air travel fatalities per boarding were also cut roughly in half during the 2018-2022 period, although, as Barnett noted, that can be interpreted in two ways: It is good they are improving as rapidly as the leading countries in air safety, but in theory, they might be able to apply lessons learned elsewhere and catch up even more quickly.

“The remaining countries continue to improve by something like a factor of two, but they’re still behind the top two groups,” Barnett observes.

Overall, Barnett notes, notwithstanding Covid-19, and looking at accident avoidance, especially in countries with the lowest fatality rates, it is remarkable that air safety keeps getting better. Progress is never assured in this area; yet, the leading countries in air safety, including their government officials and airlines, keep finding ways to make flying safer.

“After decades of sharp improvements, it’s really hard to keep improving at the same rate. And yet they do,” Barnett concludes. 

Tracking emissions to help companies reduce their environmental footprint

Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.

The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.

“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”

Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.

Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”

“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”

An unconventional master’s

Harple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.

Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.

Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.

“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.

Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.

“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”

Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.

“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”

Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)

On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.

Putting emissions data into context

Context Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.

“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”

With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.

“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.”

Pronounce AI Review: Refine Your English with Real-Time AI

Mastering English can be an uphill battle in language learning, especially when coaches have a hefty price tag and limited availability. Luckily, I stumbled upon the perfect solution I’m excited to share: Pronounce AI! It offers a free version with instant AI-powered feedback to refine your…

OpenAI hit by leadership exodus as three key figures depart

OpenAI is facing a leadership crisis as three key figures announce their departure. The news comes amid a tumultuous year for the AI powerhouse, marked by legal battles and high-profile exits. John Schulman, a co-founder of OpenAI, is leaving for rival Anthropic. Schulman confirmed his departure…

Derek Collison, Founder & CEO of Synadia – Interview Series

Derek Collison is the Founder & CEO of Synadia. Synadia invented the open source connective technology, NATS.io. With NATS you can easily connect all your applications and data at a global scale, no matter what language they are written in or where they are running. Derek…

SGLang: Efficient Execution of Structured Language Model Programs

Large language models (LLMs) are increasingly utilized for complex tasks requiring multiple generation calls, advanced prompting techniques, control flow, and structured inputs/outputs. However, efficient systems for programming and executing these applications are lacking. SGLang, a newly introduced system, aims to address this by providing efficient execution…