With sustainable cement, startup aims to eliminate gigatons of CO₂

While today’s cement is made through extremely high temperatures in a kiln, ancient Romans didn’t have that option. Still, anyone who’s been to Rome recently will tell you that ancient cement seems to have held up just fine.

The startup Sublime Systems thinks the Romans were onto something. The MIT spinout has created a drop-in replacement for today’s most commonly used cement, known as portland cement, that uses electrochemistry to skip the ultrahigh temperatures of conventional production — and the immense carbon dioxide emissions that go with it.

“Romans couldn’t go to those obscene temperatures, but they’ve proven their cement is hard and durable, and we now have 2,000 years of innovation to get that cement to meet the criteria we expect out of modern cement,” explains Sublime co-founder and CEO Leah Ellis, who developed the approach as a postdoc in the lab of Sublime co-founder and MIT Professor Yet-Ming Chiang.

Sublime’s approach has potential to make a major dent in global greenhouse gas emissions. The International Energy Agency estimates that cement is responsible for about 7 percent of human-driven carbon dioxide emissions worldwide. Sublime’s process eliminates emissions by foregoing the high temperatures and the use of limestone, which is nearly 50 percent CO₂ by weight, in favor of a novel electrochemical process.

“Cement enabled civilization as we know it today, but now it needs to be reinvented,” says Chiang, who is MIT’s Kyocera Professor of Ceramics. “Cement creates about 4 gigatons of emissions a year, and by 2050 that’s projected to become 6 gigatons a year. I think of what we’re doing as technically a very feasible way of decreasing those 4 gigatons of cement emissions as soon as possible.”

In May, Sublime reached a major milestone when 3 tons of its cement was poured in Boston’s largest net-zero commercial building in the Seaport district. Now the company is building a commercial-scale manufacturing plant in Holyoke, Massachusetts, that will be able to produce 30,000 tons of cement per year. The new plant is slated to come online as early as 2026.

“The Holyoke plant is designed to be a module that we can repeat to get to a million-ton-per-year plant,” Ellis says. “That will allow us to eliminate scale up risk so we can deploy simultaneously all over the world.”

From batteries to cement

Ellis came to MIT in 2018 as a postdoc after receiving a fellowship from the Canadian government to study anywhere she wanted.

“I chose to work with Yet-Ming Chiang in part because he has a great track record of being really creative and useful with the work he does in science,” Ellis says. “That’s the type of work I wanted: to discover things and push limits and solve problems.”

Although they were both experts in batteries, Ellis embraced Chiang’s suggestion of working on something different, and Chiang suggested exploring ways of using electrochemistry to make cement production more sustainable.

“Cement is the largest CO₂ emitter in the industrial materials world, and concrete is the world’s most abundant material by volume, next to water, but it hadn’t gotten a lot of attention on how its production could be electrified,” Chiang says.

Ellis and a graduate student, Andres Blades, began reviewing the literature on cement chemistry and production, looking for a more sustainable manufacturing process that might benefit from the rise of cheap, renewable electricity. Her research moved from exploring fundamental chemistry and technological approaches to economic and industry analyses.

“My motto is just to try as hard as I can for as long as they’ll let me,” Ellis says. “I strove to make myself indispensable. We started talking to customers and really understanding the industry and what they needed to see from low-carbon cement, what their concerns were, what the regulatory landscape was like, and it just has evolved from there. I really haven’t stopped since.”

Once the founders decided their approach had potential, they published the research in Proceedings of the National Academy of Sciences and launched their company in March of 2020. Working through Covid-19 disruptions, the team licensed their patent filings from MIT’s Technology Licensing Office and participated in the MIT i-Corps program, which helps scientific founders talk to potential customers.

“MIT has so many resources,” Ellis says. “It’s a real intellectual playground, and that makes it easy to start something up. There’s no textbook way to start up a company; it’s a game of constant exploration, and there’s so much available to explore at MIT.”

At the core of portland cement’s huge carbon footprint is the use of limestone, which is nearly 50 percent CO₂ by weight. Nearly all that CO₂ is released when limestone is heated to high temperatures to create lime. The heating process also creates enormous amounts of CO₂ on its own, as it requires temperatures of 1,450 C, a temperature that is difficult to electrify efficiently.

At MIT, Sublime’s team created an electrochemical process in which it breaks down calcium silicate rocks at ambient temperature using electrochemistry. The reaction works with abundant raw materials and creates reactive calcium and silicates that are dried and blended into Sublime’s cement.

The mixture has the same final strength and hardened phases as portland cement and meets a standard performance specification in the industry that allows it to be used in building construction.

“To our knowledge, we are the only true-zero solution for manufacturing a drop-in replacement for portland cement, because we don’t use fossil fuels and we don’t use limestone, so we can avoid all of the emissions from making portland cement,” Ellis says.

Changing the way we build

At an event hosted by MIT Technology Review a few years ago, WS Development senior vice president Yanni Tsipis ’01 SM ’02 heard about Sublime’s process and reached out to learn more. The conversation led to Sublime’s first commercial pour earlier this year in the biggest net-zero office building in Boston.

“We hope our partnership with Sublime illustrates the power of the possible when new technology flows from incubator to industry,” Tsipis says. “The location in the building’s primary public space will be experienced by thousands of people every day and is an ideal way to share our aspiration and Sublime’s extraordinary technology with the entire innovation ecosystem in Boston’s Seaport and beyond.”

Sublime is one of several companies Chiang has founded since he joined MIT as a professor nearly 40 years ago. Chiang, who also serves on the climate search advisory committee as part of MIT President Sally Kornbluth’s Climate Project at MIT, believes Sublime’s journey exemplifies the power of MIT’s community to advance impactful new technologies.

“Sublime came from recognizing a problem where there’s clearly an unmet need, and getting on it early when others hadn’t yet recognized its importance, then moving quickly to a solution that you can scale with speed to mitigate climate change,” Chiang says. “This is all just very MIT to me. We really want to focus on doing things that matter — not just to other academics, but to society and to the world.”

Character AI Review: Create & Chat with Unique AI Characters

As someone who works from home, I often dream of adventures and experiences beyond the confines of my desk. Recently, I decided to turn one of these daydreams into reality by planning a month-long culinary tour of Europe. But which restaurants and countries should I visit?…

Generative AI adoption: Strategic implications & security concerns – CyberTalk

By Manuel Rodriguez. With more than 15 years of experience in cyber security, Manuel Rodriguez is currently the Security Engineering Manager for the North of Latin America at Check Point Software Technologies, where he leads a team of high-level professionals whose objective is to help organizations and businesses meet cyber security needs. Manuel joined Check Point in 2015 and initially worked as a Security Engineer, covering Central America, where he participated in the development of important projects for multiple clients in the region. He had previously served in leadership roles for various cyber security solution providers in Colombia.

Technology evolves very quickly. We often see innovations that are groundbreaking and have the potential to change the way we live and do business. Although artificial intelligence is not necessarily new, in November of 2022 ChatGPT was released, giving the general public access to a technology we know as Generative Artificial Intelligence (GenAI). It was in a short time from then to the point where people and organizations realized it could help them gain a competitive advantage.

Over the past year, organizational adoption of GenAI has nearly doubled, showing the growing interest in embracing this kind of technology. This surge isn’t a temporary trend; it is a clear indication of the impact GenAI is already having and that it will continue to have in the coming years across various industry sectors.

The surge in adoption

Recent data reveals that 65% of organizations are now regularly using generative AI, with overall AI adoption jumping to 72% this year. This rapid increase shows the growing recognition of GenAI’s potential to drive innovation and efficiency. One analyst firm predicts that by 2026, over 80% of enterprises will be utilizing GenAI APIs or applications, highlighting the importance that businesses are giving to integrating this technology into their strategic frameworks.

Building trust and addressing concerns

Although adoption is increasing very fast in organizations, the percentage of the workforce with access to this kind of technology still relatively low. In a recent survey by Deloitte, it was found that 46% of organizations provide approved Generative AI access to 20% or less of their workforce. When asked for the reason behind this, the main answer was around risk and reward. Aligned with that, 92% of business leaders see moderate to high-risk concerns with GenAI.

As organizations scale their GenAI deployments, concerns increase around data security, quality, and explainability. Addressing these issues is essential to generate confidence among stakeholders and ensure the responsible use of AI technologies.

Data security

The adoption of Generative AI (GenAI) in organizations comes with various data security risks. One of the primary concerns is the unauthorized use of GenAI tools, which can lead to data integrity issues and potential breaches. Shadow GenAI, where employees use unapproved GenAI applications, can lead to data leaks, privacy issues and compliance violations.

Clearly defining the GenAI policy in the organization and having appropriate visibility and control over the shared information through these applications will help organizations mitigate this risk and maintain compliance with security regulations. Additionally, real-time user coaching and training has proven effective in altering user actions and reducing data risks.

Compliance and regulations

Compliance with data privacy regulations is a critical aspect of GenAI adoption. Non-compliance can lead to significant legal and financial repercussions. Organizations must ensure that their GenAI tools and practices adhere to relevant regulations, such as GDPR, HIPPA, CCPA and others.

Visibility, monitoring and reporting are essential for compliance, as they provide the necessary oversight to ensure that GenAI applications are used appropriately. Unauthorized or improper use of GenAI tools can lead to regulatory breaches, making it imperative to have clear policies and governance structures in place. Intellectual property challenges also arise from generating infringing content, which can further complicate compliance efforts.

To address these challenges, organizations should establish a robust framework for GenAI governance. This includes developing a comprehensive AI ethics policy that defines acceptable use cases and categorizes data usage based on organizational roles and functions. Monitoring systems are essential for detecting unauthorized GenAI activities and ensuring compliance with regulations.

Specific regulations for GenAI

Several specific regulations and guidelines have been developed or are in the works to address the unique challenges posed by GenAI. Some of those are more focused on the development of new AI tools while others as the California GenAI Guidelines focused on purchase and use. Examples include:

EU AI Act: This landmark regulation aims to ensure the safe and trustworthy use of AI, including GenAI. It includes provisions for risk assessments, technical documentation standards, and bans on certain high-risk AI applications.

U.S. Executive Order on AI: Issued in October of 2023, this order focuses on the safe, secure, and trustworthy development and use of AI technologies. It mandates that federal agencies implement robust risk management and governance frameworks for AI.

California GenAI Guidelines: The state of California has issued guidelines for the public sector’s procurement and use of GenAI. These guidelines emphasize the importance of training, risk assessment, and compliance with existing data privacy laws.

Department of Energy GenAI Reference Guide: This guide provides best practices for the responsible development and use of GenAI, reflecting the latest federal guidance and executive orders.

Recommendations

To effectively manage the risks associated with GenAI adoption, organizations should consider the following recommendations:

Establish clear policies and training: Develop and enforce clear policies on the approved use of GenAI. Provide comprehensive training sessions on ethical considerations and data protection to ensure that all employees understand the importance of responsible AI usage.

Continuously reassess strategies: Regularly reassess strategies and practices to keep up with technological advancements. This includes updating security measures, conducting comprehensive risk assessments, and evaluating third-party vendors.

Implement advanced GenAI security solutions: Deploy advanced GenAI solutions to ensure data security while maintaining comprehensive visibility into GenAI usage. Traditional DLP solutions based on keywords and patterns are not enough. GenAI solutions should give proper visibility by understanding the context without the need to define complicated data-types. This approach not only protects sensitive information, but also allows for real-time monitoring and control, ensuring that all GenAI activities are transparent and compliant with organizational and regulatory requirements.

Foster a culture of responsible AI usage: Encourage a culture that prioritizes ethical AI practices. Promote cross-department collaboration between IT, legal, and compliance teams to ensure a unified approach to GenAI governance.

Maintain transparency and compliance: Ensure transparency in AI processes and maintain compliance with data privacy regulations. This involves continuous monitoring and reporting, as well as developing incident response plans that account for AI-specific challenges.

By following these recommendations, organizations can make good use and take advantage of the benefits of GenAI while effectively managing the associated data security and compliance risks.

Christian Heilmann: Let’s make a simpler, more accessible web

Christian Heilmann gave this talk at Typo3 Developer Days. I’m linking it up because it strikes an already stricken nerve in me. The increasing complexity of web development has an inverse relationship with the decreasing number of entry points …

Christian Heilmann: Let’s make a simpler, more…

Paola Zeni, Chief Privacy Officer at RingCentral – Interview Series

Paola Zeni is the Chief Privacy Officer at RingCentral. She is an international privacy attorney with more than 20 years of privacy experience and a veteran of the cybersecurity industry, having worked at Symantec and at Palo Alto Networks, where she built the privacy program from…

AI Lie Detectors: Breaking Down Trust or Building Better Bonds?

Distinguishing truth from deception has been a persistent problem throughout human history. From ancient methods like trial by ordeal to the modern polygraph test, society has always sought reliable ways to expose dishonesty. In today’s fast-paced, technology-driven world, accurate lie detection is more important than ever….

Who is Winning the AI Race in 2024? Big Tech’s Race to AGI

Artificial Intelligence (AI) has become the most fiscussed technological advancement of this decade. As we push the boundaries of what machines can do, the ultimate goal for many tech giants is to achieve Artificial General Intelligence (AGI) – a hypothetical form of AI that can understand,…

3 Questions: Preparing students in MIT’s naval ROTC program

Being able to say, “I fly helicopters” — specifically the Seahawk series that boast a maximum cruise elevation of 10,000 feet and 210 miles per hour — must be a great conversation starter. So must saying that you are helping to train a future generation of naval cadets at MIT, Harvard and Tufts universities, and other local schools.

U.S. Navy Commander Jennifer A. Huck, executive officer (XO) for the Naval Reserve Officers Training Corps (NROTC) consortium, can do both. Called the Old Ironsides Battalion, the unit comprises around 80 midshipmen across six universities and is housed on the MIT campus.

After 20 years of active duty, Huck has now returned home, in a sense. She herself was commissioned through the NROTC program at Boston University, where she earned a BS in biomedical engineering in 2003. Here, Huck explains her role and how the naval ROTC program prepares students to commission as officers in the U.S. Navy and Marine Corps upon graduation.

Q: Tell us a bit about your own military and academic career. Why did you decide to pursue that path? What has surprised you along the way? And of course, what is it like to fly helicopters?

A: I have always been a person who seeks a sense of purpose, and I enjoy being part of a team. I also grew up being very involved in athletics and wanted to keep physical fitness as a big part of my life. After learning about various educational opportunities the Navy offers, I instantly gravitated towards the idea of joining because I felt that the job checked the blocks for so many things that are important to me. I joined Navy ROTC at Boston University in 1999 and I have had nothing but amazing experiences since then.

As a midshipman, I explored career paths in medicine and nuclear power. My summer training experience in 2002 onboard the aircraft carrier USS Harry S Truman sealed the deal for me wanting to be a naval aviator. The freedom of flight was exhilarating and the responsibility, leadership, and skill required of the pilots fueled my drive for purpose and mission accomplishment — not to mention the views from above were quite nice!

So after graduating from BU, I completed naval flight training and earned my pilot wings in August 2005. I subsequently spent over 10 years flying missions operating in the Middle East, Horn of Africa, and Western Pacific. Flying multi-million dollar combat helicopters is thrilling and fulfilling as it requires precise control, coordination, and focus to agilely maneuver amidst immersive aircraft vibrations, loud rotor-blade noise, and anything else that may be in the area (weather, threats, terrain, etc).

Throughout my career, I’ve had many exciting assignments, including flying those H-60 combat helicopters, working operations at the U.S. Embassy in Colombia, developing requirements for next-generation technologies at the Pentagon, and instructing students in flight school and in ROTC.

It has, however, been the people, and not necessarily the jobs, that have kept me in the Navy for 21 years. There is no other organization where you will find the same camaraderie as military service.

Q: MIT has a long history of national service and takes great pride in its ROTC students — especially given the dual rigor of the curriculum and the military training. Can you explain what an XO does day to day and how you support students?

A: The NROTC executive officer plays a vital role in the leadership and administration of the program. As second-in-command, I assist the NROTC commander, Captain Jack Houdeshell, in managing the unit’s operations. I directly supervise the unit staff and midshipmen and provide guidance, mentorship, and support to ensure everyone fulfills their roles and responsibilities effectively.

Since our unit’s mission is to train midshipmen, I also oversee the development and execution of our training curriculum, which includes naval science classes, physical training, laboratory sessions, drill instruction, and other professional development activities. This oversight ensures that midshipmen are prepared to commission as officers in the United States Navy and Marine Corps upon graduation.

MIT graduates are top performers in the fleet, and the rigorous four-year program they complete here prepares them to be ready to respond to future technical and leadership challenges.

Q: As part of your service, you’ve traveled around the world, living and working in a half-dozen countries. How would you characterize the culture at MIT? What’s been special about your time on campus?

A: Like I previously mentioned, one of the most exciting parts about my job is the dynamic environment I operate in. Part of the dynamics involves traveling around the world and experiencing different cultures and conditions. My experience at MIT, in many ways, parallels certain cultural experiences from around the world.

First, MIT has a diverse student body with students representing numerous ethnic backgrounds, countries, and experiences. MIT students are very talented, hard-working, and focused on achieving their goals; they want to make the world a better place. MIT encourages freedom of thought and unique problem-solving, similar to what is required of our military and global leaders.

What I find most special about MIT is the people. Similar to the Navy, MIT creates a global network of friendships and lifelong connections. I consider the MIT community to be my “MIT family.”

Going Dutch on climate

When MIT senior Rudiba Laiba saw that stores in the Netherlands eschewed plastic bags to save the planet, her first thought was, “that doesn’t happen in Bangladesh.”

Laiba is one of eight MIT students who traveled to the Netherlands in June as part of an MIT Energy Initiative (MITEI)-sponsored trip to experience first-hand the country’s approach to the energy transition. The Netherlands aims to be carbon neutral by 2050, making it one of the top 10 countries leading the charge on climate change, according to U.S. News and World Report.

MITEI sponsored the week-long trip to allow undergraduate and graduate students to collaboratively explore clean energy efforts with researchers, corporate leaders, and nongovernmental organizations. The students heard about projects ranging from creating hydrogen pipelines in the North Sea to climate-proofing a fuel-guzzling, asphalt-dense neighborhood.

Felipe Abreu from Kissimmee, Florida, a rising second-year student studying materials science and engineering, is working this summer on ways to melt and reuse metal scraps discarded in manufacturing processes. “When MITEI put out this notice about visiting the Netherlands, I wanted to see if there were more advanced approaches to renewable energy that I’d never been exposed to,” Abreu says.

Laiba notes that her native Bangladesh has not yet achieved the Netherlands’ nearly universal buy-in to tackling climate change, even though this South Asian country, like the Netherlands, is particularly vulnerable to rising sea levels due to topography and high population density.

Laiba, who spent part of her childhood in New York City and lived in Bangladesh from ages 8 to 18, calls Bangladesh “on the front lines of climate change.

“Even if I didn’t want to care about climate change, I had to, because I would see the effects of it,” she says.

Key players

The MIT students conducted hands-on exercises on how to switch from traditional energy sources to zero-carbon technologies. “We talked a lot about infrastructure, particularly how to repurpose natural gas infrastructure for hydrogen,” says Antje Danielson, director of education at MITEI, who led the trip with Em Schule, MITEI research and programming assistant. “The students were challenged to grapple with real-world decision-making.”

The northern section of the Netherlands is known as the “hydrogen valley” of Europe. At the University of Groningen and Hanze University School of Applied Sciences, also in Groningen, the students heard about how the region profiles itself as a world capital for the energy transition through its push toward a hydrogen-based economy and its state-of-the-art global climate models.

Erick Liang, a rising junior from Boston’s Roslindale neighborhood pursuing a dual major in nuclear science and engineering and physics, was intrigued by a massive wind farm in the port city of Eemshaven, one of the group’s first stops in the north of the country. “It was impressive as an engineering challenge, because they must have figured out ways to cheaply and effectively manufacture all these wind turbines,” he says.

They visited German energy company RWE, which is generating 15 percent of Eemshaven’s electricity from biomass, replacing coal.

Laiba, who is majoring in molecular biology and electrical engineering and computer science with a minor in business management, was intrigued by a presentation on biofuels. “It piqued my interest to see if they would use biomass on a large scale” because of the challenges and unpredictability associated with it as a fuel source.

In Paddepoel, the students toured the first of several neighborhoods that once lacked greenery and used fossil fuel-based heating systems and now aim to generate more energy than they consume.

“The students got to see what the size of the district heating pipes would be, and how they go through people’s gardens into the houses. We talked about the physical impact on the neighborhood of installing these pipes, as well as the potential social and political implications connected to a really difficult transition like this,” Danielson says.

Going green

Green hydrogen promises to be a key player in the energy transition, and Netherlands officials say they have committed to the new infrastructure and business models needed to move ahead with hydrogen as a fuel source.

The students explored how green hydrogen differs from fossil fuel-generated hydrogen. They saw how Dutch companies grappled with siting hydrogen production facilities and handling hydrogen as a gas, which, unlike natural gas, does not yet have a detectable artificial odor. 

The students heard from energy network operator Gasunie about the science and engineering behind repurposing existing natural gas pipelines for a hydrogen network in the North Sea, and were challenged to solve the puzzle of combining hydrogen production with offshore wind energy. 

In the port of Rotterdam, they saw how the startup Battolyser Systems — which is working with Delft University of Technology on an electrolysis device that splits water into hydrogen and oxygen and doubles as a battery — is transitioning from lab bench to market.

Laiba was impressed by how much capital was going into high-risk ventures and startups, “not only because they’re trying to make something revolutionary, but also because society needs to accept and use” their products.

Abreu says that at Battolyser Systems, “I saw people my age on the forefront of green hydrogen, trying to make a difference.”

The students visited the Global Center on Adaptation’s carbon-neutral floating offices and learned how this international organization supports climate adaptation actions around the world and the practice of mitigation.

Also in Rotterdam, international marine contractor Van Oord took students to view a ship that installs wind turbines and explained how their new technology reduces the sound shockwave impact of the installations on marine life.

At the Port of Rotterdam, the students heard about the challenges faced by Europe’s largest port in terms of global shipping and choosing the fuels of the future. The speaker tasked the MIT students with coming up with a plan to transition the privately owned, owner-inhabited barges that ply the region’s inland waterways to a zero-carbon system.

“The Port Authority uses this exercise to illustrate the enormous complexity faced by companies in the energy transition,” Danielson says. “The fact that our students performed really well on the spot shows that we are doing something right at MIT.”

Defining a path forward

Liang, Abreu, and Laiba were struck by how the Netherlands has come together as a country over climate change. “In the U.S., a lot of people disagree with the concept of climate change as a whole,” Liang says. “But in the Netherlands, everyone is on the same page that this is an issue that we should be working toward. They’re capable of seeing a path forward and trying to take action whenever possible.”

Liang, a member of the MIT Solar Electric Vehicle Team, is doing undergraduate research sponsored by MITEI this summer, working to accelerate fusion manufacturing and development at the MIT Plasma Science and Fusion Center. He’s improving 3D printing processes to manufacture components that can accommodate the high temperatures and small space within a tokamak reactor, which uses magnetic fields to confine plasma and produce controlled thermonuclear fusion.

“I personally would like to try finding a new solution” to achieving carbon neutrality, he says. That solution, to Liang, is fusion energy, with some entities hoping to demonstrate net energy gain through fusion in the next five years.

Laiba is a researcher with the MIT Office of Sustainability, looking at ways to quantify and reduce the level of MIT’s Scope 3 greenhouse gas emissions. Scope 3 emissions are tied to the purchase of goods that use fossil fuels in their manufacture. She says, ​“Whatever I decide to do in the future will involve making a more sustainable future. And to me, renewable energy is the driving force behind that.”

In the Netherlands, she says, “what we learned through the entire trip was that renewable energy powers the country to a large amount. Things I could see tangibly was Starbucks having paper cups even for our iced drinks, which I think would flop very hard in the U.S. I don’t think society’s ready for that yet.”

Abreu says, “In America, sustainability has always been in the back seat while other things take the forefront. So going to a country where everybody you talk to has a stake (in sustainability) and actually cares, and they’re all pushing together for this common goal, it was inspiring. It gave me hope.”