In this guest post, Vladimir Malinovskii discusses the intense competition between research teams at Yandex, IST Austria, KAUST, and Cornell University in developing cutting-edge neural network compression techniques….
Risk, culture, and control
Some people think the world is wildly unpredictable, and are glad insurance can handle the risk and uncertainty they face. Other people believe their destiny is written in the stars, and consult a daily horoscope to reveal what is in store for them.
Either way, Caley Horan has the history of these things covered.
Horan, an associate professor in MIT’s history program, studies multiple topics related to how we handle uncertainty in modern American life. Her award-winning first book, “Insurance Era,” published in 2021 by the University of Chicago Press, examined a deep tension: Insurance is a collective endeavor in certain respects but is defined in individual terms, at least by the private sector.
“I realized there was a story about insurance in the second half of the 20th century that people hadn’t really written,” Horan says. “It became important to me to tell that story, and to think about both the welfare state and private insurance.”
Currently Horan is in the midst of book project tackling another unwritten story: how astrology became a thoroughly modern, commercialized, and American pastime.
That might seem like quite a departure, but actually, Horan says, her history of astrology grew out of studying insurance history. The connecting tissue is how people themselves view uncertainty, risk, and the future.
“The forms of astrology that evolved in the U.S. over the course of the 20th century turned away from chance, which insurance seeks to cover, and instead offered a theory of causation rooted in external natural phenomena,” Horan says. “The celestial bodies and movements of stars and planets are seen as determining forces, rather than the chance-based world of risk. This creates a clear sense of causation, and of time as cyclical rather than progressing. There’s a real appetite for that.”
In both cases, Horan is uncovering how some familiar aspects of contemporary life have taken their current forms.
“The fact that everything has a history is what drew me to history as a field,” Horan says. “It’s tremendously important to have a sense of the past, and I find it endlessly interesting and exciting.”
For her research and teaching, Horan was granted tenure at MIT last year.
An open field
Horan, who grew up in Colorado, attended Stanford University, where she was a defender on the soccer team while completing a double major in history and feminist studies.
“I settled on history because it seemed like a really open field,” Horan says. “You can study anything historically. If you want to study film, art, or if you want to study insurance or astrology, you can do so as a historian.”
Horan received her BA from Stanford in 2003, then attended graduate school at the University of Minnesota, where she settled on the history of insurance as her dissertation topic and earned her PhD in 2011. She joined the MIT faculty in 2015, while working to turn her thesis into her first book.
In “Insurance Era,” Horan scrutinized high-level political dynamics as the private insurance industry sought to limit the New Deal-era expansion of the public safety net, which it regarded as a threat to its business. Horan also studied this with the lens of a cultural historian, looking at how industry advertising, for instance, portrays the decision to acquire insurance as a highly individualistic endeavor, a matter of personal prudence and savvy.
Ultimately “Insurance Era” received critical acclaim, winning the 2022 Hagley Prize for the best book in business history, and it has just been published in a new paperback edition.
Astrology and the self
At the moment, Horan is researching and writing her history of astrology — or at least the modern American version of the practice. Earlier in America, what might be called “natural astrology” appeared in almanacs with forecasts about things like the best time to plant crops, as “part of an economy that had a very agrarian nature,” Horan says.
But that economy changed, and so did astrology: Going back a bit more than century, astrology became focused on the self, and became a viable business all by itself.
“The astrology that we know today in the United States is very recent,” Horan says. “A lot of what we might today call the therapeutic nature of astrology, which is focused on the self and self-knowledge and self-understanding, is a late 19th-century development. By the 20th century, astrology becomes commercialized and part of a capitalist economy.”
Newspaper horoscope columns, for instance, date to 1930, along with the invention of “sun-sign” astrology, divided by birth dates.
“I think modern astrology has offered people, and continues to offer people, an interpretive framework for understanding identity, self, and relationships to others, at a time when matters of work and identity have been up for grabs,” Horan says.
For her part, Horan’s own sense of identity as a historian is well-established, even as her work evolves: She will continue to pursue topics combining modern business, self-identity, uncertainty, and even health, studying those things in commercial and cultural terms. After she finishes her work on astrology in America, Horan intends to start writing about caregiver work, a growing part of the U.S. economy. And, she says, she continues to follow developments in insurance closely, with a return to that topic possible as well.
“I do feel some of the big-picture issues I have raised about insurance are very relevant,” Horan says. “That includes issues about the power we accord to private industry, how we think about collective organization, how Americans think about data and who controls their data, and how society distributes its resources, including basic insurance coverage. I think we’re heading into uncharted territory with some of these matters, and I do hope some of the questions I’ve raised continue to inform the way scholars are thinking about them.”
A new approach to fine-tuning quantum materials
Quantum materials — those with electronic properties that are governed by the principles of quantum mechanics, such as correlation and entanglement — can exhibit exotic behaviors under certain conditions, such as the ability to transmit electricity without resistance, known as superconductivity. However, in order to get the best performance out of these materials, they need to be properly tuned, in the same way that race cars require tuning as well. A team led by Mingda Li, an associate professor in MIT’s Department of Nuclear Science and Engineering (NSE), has demonstrated a new, ultra-precise way to tweak the characteristics of quantum materials, using a particular class of these materials, Weyl semimetals, as an example.
The new technique is not limited to Weyl semimetals. “We can use this method for any inorganic bulk material, and for thin films as well,” maintains NSE postdoc Manasi Mandal, one of two lead authors of an open-access paper — published recently in Applied Physics Reviews — that reported on the group’s findings.
The experiment described in the paper focused on a specific type of Weyl semimetal, a tantalum phosphide (TaP) crystal. Materials can be classified by their electrical properties: metals conduct electricity readily, whereas insulators impede the free flow of electrons. A semimetal lies somewhere in between. It can conduct electricity, but only in a narrow frequency band or channel. Weyl semimetals are part of a wider category of so-called topological materials that have certain distinctive features. For instance, they possess curious electronic structures — kinks or “singularities” called Weyl nodes, which are swirling patterns around a single point (configured in either a clockwise or counterclockwise direction) that resemble hair whorls or, more generally, vortices. The presence of Weyl nodes confers unusual, as well as useful, electrical properties. And a key advantage of topological materials is that their sought-after qualities can be preserved, or “topologically protected,” even when the material is disturbed.
“That’s a nice feature to have,” explains Abhijatmedhi Chotrattanapituk, a PhD student in MIT’s Department of Electrical Engineering and Computer Science and the other lead author of the paper. “When you try to fabricate this kind of material, you don’t have to be exact. You can tolerate some imperfections, some level of uncertainty, and the material will still behave as expected.”
Like water in a dam
The “tuning” that needs to happen relates primarily to the Fermi level, which is the highest energy level occupied by electrons in a given physical system or material. Mandal and Chotrattanapituk suggest the following analogy: Consider a dam that can be filled with varying levels of water. One can raise that level by adding water or lower it by removing water. In the same way, one can adjust the Fermi level of a given material simply by adding or subtracting electrons.
To fine-tune the Fermi level of the Weyl semimetal, Li’s team did something similar, but instead of adding actual electrons, they added negative hydrogen ions (each consisting of a proton and two electrons) to the sample. The process of introducing a foreign particle, or defect, into the TaP crystal — in this case by substituting a hydrogen ion for a tantalum atom — is called doping. And when optimal doping is achieved, the Fermi level will coincide with the energy level of the Weyl nodes. That’s when the material’s desired quantum properties will be most fully realized.
For Weyl semimetals, the Fermi level is especially sensitive to doping. Unless that level is set close to the Weyl nodes, the material’s properties can diverge significantly from the ideal. The reason for this extreme sensitivity owes to the peculiar geometry of the Weyl node. If one were to think of the Fermi level as the water level in a reservoir, the reservoir in a Weyl semimetal is not shaped like a cylinder; it’s shaped like an hourglass, and the Weyl node is located at the narrowest point, or neck, of that hourglass. Adding too much or too little water would miss the neck entirely, just as adding too many or too few electrons to the semimetal would miss the node altogether.
Fire up the hydrogen
To reach the necessary precision, the researchers utilized MIT’s two-stage “Tandem” ion accelerator — located at the Center for Science and Technology with Accelerators and Radiation (CSTAR) — and buffeted the TaP sample with high-energy ions coming out of the powerful (1.7 million volt) accelerator beam. Hydrogen ions were chosen for this purpose because they are the smallest negative ions available and thus alter the material less than a much larger dopant would. “The use of advanced accelerator techniques allows for greater precision than was ever before possible, setting the Fermi level to milli-electron volt [thousandths of an electron volt] accuracy,” says Kevin Woller, the principal research scientist who leads the CSTAR lab. “Additionally, high-energy beams allow for the doping of bulk crystals beyond the limitations of thin films only a few tens of nanometers thick.”
The procedure, in other words, involves bombarding the sample with hydrogen ions until a sufficient number of electrons are taken in to make the Fermi level just right. The question is: how long do you run the accelerator, and how do you know when enough is enough? The point being that you want to tune the material until the Fermi level is neither too low nor too high.
“The longer you run the machine, the higher the Fermi level gets,” Chotrattanapituk says. “The difficulty is that we cannot measure the Fermi level while the sample is in the accelerator chamber.” The normal way to handle that would be to irradiate the sample for a certain amount of time, take it out, measure it, and then put it back in if the Fermi level is not high enough. “That can be practically impossible,” Mandal adds.
To streamline the protocol, the team has devised a theoretical model that first predicts how many electrons are needed to increase the Fermi level to the preferred level and translates that to the number of negative hydrogen ions that must be added to the sample. The model can then tell them how long the sample ought to be kept in the accelerator chamber.
The good news, Chotrattanapituk says, is that their simple model agrees within a factor of 2 with trusted conventional models that are much more computationally intensive and may require access to a supercomputer. The group’s main contributions are two-fold, he notes: offering a new, accelerator-based technique for precision doping and providing a theoretical model that can guide the experiment, telling researchers how much hydrogen should be added to the sample depending on the energy of the ion beam, the exposure time, and the size and thickness of the sample.
Fine things to come with fine-tuning
This could pave the way to a major practical advance, Mandal notes, because their approach can potentially bring the Fermi level of a sample to the requisite value in a matter of minutes — a task that, by conventional methods, has sometimes taken weeks without ever reaching the required degree of milli-eV precision.
Li believes that an accurate and convenient method for fine-tuning the Fermi level could have broad applicability. “When it comes to quantum materials, the Fermi level is practically everything,” he says. “Many of the effects and behaviors that we seek only manifest themselves when the Fermi level is at the right location.” With a well-adjusted Fermi level, for example, one could raise the critical temperature at which materials become superconducting. Thermoelectric materials, which convert temperature differences into an electrical voltage, similarly become more efficient when the Fermi level is set just right. Precision tuning might also play a helpful role in quantum computing.
Thomas Zac Ward, a senior scientist at the Oak Ridge National Laboratory, offered a bullish assessment: “This work provides a new route for the experimental exploration of the critical, yet still poorly understand, behaviors of emerging materials. The ability to precisely control the Fermi level of a topological material is an important milestone that can help bring new quantum information and microelectronics device architectures to fruition.”
Regulating AI Won’t Solve the Misinformation Problem
Setting the Scene: The AI Boom The latest AI craze has democratized access to AI platforms, ranging from advanced Generative Pre-trained Transformers (GPTs) to embedded chatbots in various applications. AI’s promise of delivering vast amounts of information quickly and efficiently is transforming industries and daily life….
Flux by Black Forest Labs: The Next Leap in Text-to-Image Models. Is it better than Midjourney?
Black Forest Labs, the team behind the groundbreaking Stable Diffusion model, has released Flux – a suite of state-of-the-art models that promise to redefine the capabilities of AI-generated imagery. But does Flux truly represent a leap forward in the field, and how does it stack up…
Mickey Haslavsky, CEO & Founder of enso – Interview Series
Mickey Haslavsky is the CEO & Founder of enso, a platform designed for non-technical users, enso introduces the world’s first experience where AI bots deliver premium-quality services directly at a fraction of the cost. enso chooses to work with operational non-tech businesses to help them make…
D-Lab off-grid brooder saves chicks and money using locally manufactured thermal batteries
MIT D-Lab students and instructors are improving the efficacy and economics of a brooder technology for newborn chicks that utilizes a practical, local resource: beeswax.
Developed through participatory design with agricultural partners in Cameroon, their Off-Grid Brooder is a solution aimed at improving the profitability of the African nation’s small- and medium-scale poultry farms. Since it is common for smallholders in places with poor electricity supply to tend open fires overnight to keep chicks warm, the invention might also let farmers catch up on their sleep.
“The target is eight hours. If farmers can sustain the warmth for eight hours, then they get to sleep,” says D-Lab instructor and former student Ahmad (Zak) Zakka SM ’23, who traveled to Cameroon in May to work on implementing brooder improvements tested at the D-Lab, along with D-Lab students, collaborators from African Solar Generation (ASG), and the African Diaspora Council of Switzerland – Branch Cameroon (CDAS–BC).
Poultry farming is heavily concentrated in lower- and middle-income countries, where it is an important component of rural economies and provides an inexpensive source of protein for residents. Raising chickens is fraught with economic risk, however, largely because it is hard for small-scale farmers to keep newborn chicks warm enough to survive (33 to 35 degrees Celsius, or 91 to 95 degrees Fahrenheit, depending on age). After the cost of feed, firewood used to heat the chick space is the biggest input for rural poultry farmers.
According to D-Lab researchers, an average smallholder in Cameroon using traditional brooding methods spends $17 per month on firewood, achieves a 10 percent profit margin, and experiences chick mortality that can be as high as a total loss due to overheating or insufficient heat. The Off-Grid Brooder is designed to replace open fires with inexpensive, renewable, and locally available beeswax — a phase-change material used to make thermal batteries.
ASG initially developed a brooder technology, the SolarBox, that used photovoltaic panels and electric batteries to power incandescent bulbs. While this provided effective heating, it was prohibitively expensive and difficult to maintain. In 2020, students from the D-Lab Energy class took on the challenge of reducing the cost and complexity of the SolarBox heating system to make it more accessible to small farmers in Cameroon. Through participatory design — a collaborative approach that involves all stakeholders in early stages of the design process — the team discovered a unique solution. Beeswax stored in a used glass container (such as a mayonnaise jar) is melted using a double boiler over a fire and then installed inside insulated brooder boxes alongside the chicks. As the beeswax cools and solidifies, it releases heat for several hours, keeping the brooder within the temperature range that chicks need to grow and develop. Farmers can then recharge the cooled wax batteries and repeat the process again and again.
“The big challenge was how to get heat,” says D-Lab Research Scientist Daniel Sweeney, who, with Zakka, co-teaches two D-Lab classes, 2.651/EC.711 (Introduction to Energy in Global Development), and 2.652/EC.712 (Applications of Energy in Global Development). “Decoupling the heat supplied by biomass (wood) from the heat the chicks need at night in the brooder, that’s the core of the innovation here.”
D-Lab instructors, researchers, and students have tested and tuned the system with partners in Cameroon. A research box constructed during a D-Lab trip to Cameroon in January 2023 worked well, but was “very expensive to build,” Zakka says. “The research box was a proof of concept in the field. The next step was to figure out how to make it affordable,” he continues.
A new brooder box, made entirely of locally sourced recycled materials at 5 percent of the cost of the research prototype, was developed during D-Lab’s January 2024 trip to Cameroon. Designed and produced in collaboration with CDAS-BC, the new brooder is much more affordable, but its functionality still needs fine-tuning. From late-May through mid-June, the D-Lab team, led by Zakka, worked with Cameroonian collaborators to improve the system again. This time, they assessed the efficacy of using straw, a readily available and low-cost material, arranged in panels to insulate the brooder box.
The MIT team was hosted by CDAS-BC, including its president and founder Carole Erlemann Mengue and secretary and treasurer Kathrin Witschi, who operate an organic poultry farm in Afambassi, Cameroon. “The students will experiment with the box and try to improve the insulation of the box without neglecting that the chicks will need ventilation,” they say.
In addition, the CDAS-BC partners say that they hoped to explore increasing the number of chicks that the box can keep warm. “If the system could heat 500 to 1,000 chicks at a time,” they note, “it would help farmers save firewood, to sleep through the night, and to minimize the risk of fire in the building and the risk of stepping on chicks while replacing firewood.”
Earlier this spring, Erlemann Mengue and Witschi tested the low-cost Off-Grid Brooder Box, which can hold 30 to 40 chicks in its current design.
“They were very interested in partnering with us to evaluate the technology. They are running the tests and doing a lot of technical measurement to track the temperature inside the brooder over time,” says Sweeney, adding that the CDAS-BC partners are amassing datasets that they send to the MIT D-Lab team.
Sweeney and Zakka, along with PhD candidate Aly Kombargi, who worked on the research box in Cameroon last year, hope to not only improve the functionality of the Off-Grid Poultry Brooder but also broaden its use beyond Cameroon.
“The goal of our trip was to have a working prototype, and the goal since then has been to scale this up,” Kombargi says. “It’s absolutely scalable.”
Concurring that “the technology should work across developing countries in small-scale poultry sectors,” Zakka says this spring’s D-Lab trip included workshops for area poultry farmers to teach them about benefits of the Off-Grid Brooder and how to make their own.
“I’m excited to see if we can get people excited about pushing this as a business … to see if they would build and sell it to other people in the community,” Zakka says.
Adds Sweeney, “This isn’t rocket science. If we have some guidance and some open-source information we could share, I’m pretty sure (farmers) could put them together on their own.”
Already, he says, partners identified through MIT’s networks in Zambia and Uganda are building their own brooders based on the D-Lab design.
MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), which supports research, innovation, and cross-disciplinary collaborations involving water and food systems, awarded the Off-Grid Brooder project a $25,000 research and development grant in 2022. The program is “pleased that the project’s approach was grounded in engagement with MIT students and community collaborators,” says Executive Director Renee Robins. “The participatory design process helped produce innovative prototypes that are already making positive impacts for smallholder poultry farmers.”
That process and the very real impact on communities in Cameroon is what draws students to the project and keeps them committed.
Sweeney says a recent D-Lab design review for the chick brooder highlighted that the project continued to attract the attention and curiosity of students who participated in earlier stages and still want to be involved.
“There’s something about this project. There’s this whole tribe of students that are still active on the broader project,” he says. “There’s something about it.”
HTML Attribute to Allow/Disallow Handwriting Input
A new explainer for a new HTML attribute to handle handwritten inputs. Like this:
<input type=”text” handwriting=”true” … <input type=”text” handwriting=”false” … <textarea handwriting=”” … <!– evaluates to “true” –<div contenteditable handwriting=”true”…</div<!– maybe? —
The primary use …
HTML Attribute to Allow/Disallow Handwriting Input originally published on CSS-Tricks, which…
MIT chemists synthesize plant-derived molecules that hold potential as pharmaceuticals
MIT chemists have developed a new way to synthesize complex molecules that were originally isolated from plants and could hold potential as antibiotics, analgesics, or cancer drugs.
These compounds, known as oligocyclotryptamines, consist of multiple tricyclic substructures called cyclotryptamine, fused together by carbon–carbon bonds. Only small quantities of these compounds are naturally available, and synthesizing them in the lab has proven difficult. The MIT team came up with a way to add tryptamine-derived components to a molecule one at a time, in a way that allows the researchers to precisely assemble the rings and control the 3D orientation of each component as well as the final product.
“For many of these compounds, there hasn’t been enough material to do a thorough review of their potential. I’m hopeful that having access to these compounds in a reliable way will enable us to do further studies,” says Mohammad Movassaghi, an MIT professor of chemistry and the senior author of the new study.
In addition to allowing scientists to synthesize oligocyclotryptamines found in plants, this approach could also be used to generate new variants that may have even better medicinal properties, or molecular probes that can help to reveal their mechanism of action.
Tony Scott PhD ’23 is the lead author of the paper, which appears today in the Journal of the American Chemical Society.
Fusing rings
Oligocyclotryptamines belong to a class of molecules called alkaloids — nitrogen-containing organic compounds produced mainly by plants. At least eight different oligocyclotryptamines have been isolated from a genus of flowering plants known as Psychotria, most of which are found in tropical forests.
Since the 1950s, scientists have studied the structure and synthesis of dimeric cyclotryptamines, which have two cyclotryptamine subunits. Over the past 20 years, significant progress has been made characterizing and synthesizing dimers and other smaller members of the family. However, no one has been able to synthesize the largest oligocyclotryptamines, which have six or seven rings fused together.
One of the hurdles in synthesizing these molecules is a step that requires formation of a bond between a carbon atom of one tryptamine-derived subunit to a carbon atom of the next subunit. The oligocyclotryptamines have two types of these linkages, both containing at least one carbon atom that has bonds with four other carbons. That extra bulk makes those carbon atoms less accessible to undergo reactions, and controlling the stereochemistry — the orientation of the atoms around the carbon — at all these junctures poses a significant challenge.
For many years, Movassaghi’s lab has been developing ways to form carbon-carbon bonds between carbon atoms that are already crowded with other atoms. In 2011, they devised a method that involves transforming the two carbon atoms into carbon radicals (carbon atoms with one unpaired electron) and directing their union. To create these radicals, and guide the paired union to be completely selective, the researchers first attach each of the targeted carbon atoms to a nitrogen atom; these two nitrogen atoms bind to each other.
When the researchers shine certain wavelengths of light on the substrate containing the two fragments linked via the two nitrogen atoms, it causes the two atoms of nitrogen to break away as nitrogen gas, leaving behind two very reactive carbon radicals in close proximity that join together almost immediately. This type of bond formation has also allowed the researchers to control the molecules’ stereochemistry.
Movassaghi demonstrated this approach, which he calls diazene-directed assembly, by synthesizing other types of alkaloids, including the communesins. These compounds are found in fungi and consist of two ring-containing molecules, or monomers, joined together. Later, Movassaghi began using this approach to fuse larger numbers of monomers, and he and Scott eventually turned their attention to the largest oligocyclotryptamine alkaloids.
The synthesis that they developed begins with one molecule of cyclotryptamine derivative, to which additional cyclotryptamine fragments with correct relative stereochemistry and position selectivity are added, one at a time. Each of these additions is made possible by the diazene-directed process that Movassaghi’s lab previously developed.
“The reason why we’re excited about this is that this single solution allowed us to go after multiple targets,” Movassaghi says. “That same route provides us a solution to multiple members of the natural product family because by extending the iteration one more cycle, your solution is now applied to a new natural product.”
“A tour de force”
Using this approach, the researchers were able to create molecules with six or seven cyclotryptamine rings, which has never been done before.
“Researchers worldwide have been trying to find a way to make these molecules, and Movassaghi and Scott are the first to pull it off,” says Seth Herzon, a professor of chemistry at Yale University, who was not involved in the research. Herzon described the work as “a tour de force in organic synthesis.”
Now that the researchers have synthesized these naturally occurring oligocyclotryptamines, they should be able to generate enough of the compounds that their potential therapeutic activity can be more thoroughly investigated.
They should also be able to create novel compounds by switching in slightly different cyclotryptamine subunits, Movassaghi says.
“We will continue to use this very precise way of adding these cyclotryptamine units to assemble them together into complex systems that have not been addressed yet, including derivatives that could potentially have improved properties,” he says.
The research was funded by the U.S. National Institute of General Medical Sciences.