A revolutionary, bold educational endeavor for Belize

A revolutionary, bold educational endeavor for Belize

When 14-year-old Jahzhia Moralez played a vocabulary game that involved jumping onto her friend like a backpack, she knew Itz’at STEAM Academy wasn’t like other schools in Belize. Transferring from a school that assigned nearly four hours of homework every night, Moralez found it strange that her first week at Itz’at was focused on having fun. 

“I was very excited,” Moralez says. “I want to be an architect or a vet, and this school has the curriculum for that and other technology-based stuff.”

The name “Itz’at” translates to “wise one” in Maya, honoring the local culture that studied mathematics and astronomy for over a thousand years. Launched in September 2023, Itz’at STEAM Academy is a secondary school that prepares students between the ages of 13 and 16 to build sustainable futures for themselves and their communities, using science, technology, engineering, arts, and mathematics (STEAM). The school’s mission is to create a diverse and inclusive community for all, especially girls, students with special educational needs, and learners from marginalized social, economic, and cultural groups.

The school’s launch is the culmination of a three-year project between MIT and the Ministry of Education, Culture, Science, and Technology of Belize. “The Itz’at STEAM Academy represents a revolutionary and bold educational endeavor for us in Belize,” a ministry representative says. “Serving as an institution championing the pedagogy of STEAM through inventive and imaginative methodologies, its primary aim is to push the boundaries of educational norms within our nation.”

Itz’at is one of the first Belizean schools to use competency-based programs and individualized, authentic learning experiences. The Itz’at pedagogical framework was co-created by MIT pK-12 — part of MIT Open Learning — with members of the ministry and the school. The framework’s foundation has three core pillars: social-emotional and cultural learning, transdisciplinary academics, and community engagement.

“The school’s core pillars inform the students’ growth and development by fostering empathy, cultural awareness, strong interpersonal skills, holistic thinking, and a sense of responsibility and civic-mindedness,” says Vice Principal Christine Coc.

Building student confidence and connecting with community

The teaching and learning framework developed for Itz’at is rooted in proven learning science research. A student-centered, hands-on learning approach helps students develop critical thinking, creativity, and problem-solving skills. 

“The curriculum places emphasis on fostering student competence and cultivating a culture where it’s acceptable not to have all the answers,” says teacher Lionel Palacio.

Instead of measuring students’ understanding through tests and quizzes, which focus on memorization of content, teachers assess each stage of students’ project-based work. Teachers are reporting increased student engagement and deeper understanding of concepts.

“It’s like night and day,” says Moralez’s father, Alejandro. “I enjoy seeing her happy while working on a project. She’s not too stressed.”

The transdisciplinary approach encourages students to think beyond the boundaries of traditional school subjects. This holistic educational experience reinforces students’ understanding. For example, Moralez first learned about conversions in her Quantitative Reasoning course, and later applied that knowledge to convert centimeters to kilometers for a Belizean Studies project.

Students are also encouraged to consider their roles in and outside of school through community engagement initiatives. Connections with outside organizations like the Belize Zoo and the Belize Institute of Archaeology open avenues for collaboration and mutual growth.

“We have seen a positive impact on students’ confidence and self-esteem as they take on challenges and see the real-world relevance of their learning,” says Coc. 

Assignments that engage in real-world problem-solving are practical, offering students insight into future careers. The school aims to create career pathways to strengthen Belize’s existing industries, such as agriculture and food systems, while also supporting the development of new ones, such as cybersecurity.

Students’ sense of belonging is readily apparent to teachers, which positively correlates with their learning. “There’s a noticeable companionship among students, with a willingness to assist one another and an openness to the novel learning approach,” says Palacio.

Parents see the impact of the safe learning environment that Itz’at creates for their children. Izaya Lovell, for example, gets to embrace his whole self. “I get to speak my mother tongue, Kriol,” he says. “I can be like my dad — get dreads and grow out my hair. I can play sports and be physical.”

Izaya’s mother, Odessa Lovell, says her son was a completely different person after one month of studying at Itz’at. “He’s so independent, he’s saving money, and he’s doing things on his own,” she says.

A vision for Belize

The development of Itz’at emerged from a 2019 agreement between MIT’s Abdul Latif Jameel World Education Lab (J-WEL) and the ministry for the implementation of a STEAM laboratory school in Belize, with funding from the Inter-American Development Bank. MIT had a proven track record of projects and partnerships that transformed education globally. For example, MIT collaborated with administrators in India, which trained 3,300 teachers to launch a large-scale education system focusing on hands-on learning and competencies in values, citizenship, and professional skills that would prepare Indian students for further academic studies or the workforce. The Belize program is the first time that groups across the Institute have come together to develop a school from the ground up, and MIT pK-12 led the charge.

“One of the key aspects of the project has been the approach to co-design and co-creation of the school,” says Claudia Urrea, principal investigator for the Itz’at project at MIT and senior associate director of MIT pK-12. “This approach has not only allowed us to create a relevant school for the country, but to build the local capacity for innovation to sustain beyond the time of the project.”

Working with an extended team at MIT and stakeholders from the ministry, the school, parents, the community, and businesses, Urrea oversaw the development of the school’s mission, vision, values, governance structure, and internship program. The MIT pK-12 team — Urrea; Emily Glass, senior learning innovation designer; and Joe Diaz, program coordinator — led a collaborative effort on the school’s pedagogical framework and curriculum. Other core MIT team members include Brandon Muramatsu, associate director of special projects at Open Learning, and Judy Perry, director of the MIT Scheller Teacher Education Program, who created operational guidance for finances, policies, and teacher professional development. By sharing insights with J-WEL, the MIT pK-12 team is fueling shared thinking and innovations that improve students’ learning and pathways from early to higher education to the workforce. 

Like the students, this is the Belizean teachers’ first experience with project-based learning. The MIT team shared the skills, mindsets, and practical training needed to achieve the school’s core values. The professional development training was designed to build their capacity, so they feel confident teaching this model to students and future educators. 

Itz’at currently has 64 students, with plans to reach full capacity of 300 students by 2026. The goal is to continue to build capacity toward STEAM education in the country, expand the possibilities available to students after graduation, and foster a robust school-to-career pipeline. 

“The opening of this school marks a pioneering milestone not just within Belize but also across the broader Central American and Caribbean regions,” a ministry spokesperson says. “We are excited about the future of Itz’at STEAM Academy and the success of its students.”

MIT-derived algorithm helps forecast the frequency of extreme weather

To assess a community’s risk of extreme weather, policymakers rely first on global climate models that can be run decades, and even centuries, forward in time, but only at a coarse resolution. These models might be used to gauge, for instance, future climate conditions for the northeastern U.S., but not specifically for Boston.

To estimate Boston’s future risk of extreme weather such as flooding, policymakers can combine a coarse model’s large-scale predictions with a finer-resolution model, tuned to estimate how often Boston is likely to experience damaging floods as the climate warms. But this risk analysis is only as accurate as the predictions from that first, coarser climate model.

“If you get those wrong for large-scale environments, then you miss everything in terms of what extreme events will look like at smaller scales, such as over individual cities,” says Themistoklis Sapsis, the William I. Koch Professor and director of the Center for Ocean Engineering in MIT’s Department of Mechanical Engineering.

Sapsis and his colleagues have now developed a method to “correct” the predictions from coarse climate models. By combining machine learning with dynamical systems theory, the team’s approach “nudges” a climate model’s simulations into more realistic patterns over large scales. When paired with smaller-scale models to predict specific weather events such as tropical cyclones or floods, the team’s approach produced more accurate predictions for how often specific locations will experience those events over the next few decades, compared to predictions made without the correction scheme.

MIT-derived algorithm helps forecast the frequency of extreme weather

Play video

This animation shows the evolution of storms around the northern hemisphere, as a result of a high-resolution storm model, combined with the MIT team’s corrected global climate model. The simulation improves the modeling of extreme values for wind, temperature, and humidity, which typically have significant errors in coarse scale models.

Credit: Courtesy of Ruby Leung and Shixuan Zhang, PNNL

Sapsis says the new correction scheme is general in form and can be applied to any global climate model. Once corrected, the models can help to determine where and how often extreme weather will strike as global temperatures rise over the coming years. 

“Climate change will have an effect on every aspect of human life, and every type of life on the planet, from biodiversity to food security to the economy,” Sapsis says. “If we have capabilities to know accurately how extreme weather will change, especially over specific locations, it can make a lot of difference in terms of preparation and doing the right engineering to come up with solutions. This is the method that can open the way to do that.”

The team’s results appear today in the Journal of Advances in Modeling Earth Systems. The study’s MIT co-authors include postdoc Benedikt Barthel Sorensen and Alexis-Tzianni Charalampopoulos SM ’19, PhD ’23, with Shixuan Zhang, Bryce Harrop, and Ruby Leung of the Pacific Northwest National Laboratory in Washington state.

Over the hood

Today’s large-scale climate models simulate weather features such as the average temperature, humidity, and precipitation around the world, on a grid-by-grid basis. Running simulations of these models takes enormous computing power, and in order to simulate how weather features will interact and evolve over periods of decades or longer, models average out features every 100 kilometers or so.

“It’s a very heavy computation requiring supercomputers,” Sapsis notes. “But these models still do not resolve very important processes like clouds or storms, which occur over smaller scales of a kilometer or less.”

To improve the resolution of these coarse climate models, scientists typically have gone under the hood to try and fix a model’s underlying dynamical equations, which describe how phenomena in the atmosphere and oceans should physically interact.

“People have tried to dissect into climate model codes that have been developed over the last 20 to 30 years, which is a nightmare, because you can lose a lot of stability in your simulation,” Sapsis explains. “What we’re doing is a completely different approach, in that we’re not trying to correct the equations but instead correct the model’s output.”

The team’s new approach takes a model’s output, or simulation, and overlays an algorithm that nudges the simulation toward something that more closely represents real-world conditions. The algorithm is based on a machine-learning scheme that takes in data, such as past information for temperature and humidity around the world, and learns associations within the data that represent fundamental dynamics among weather features. The algorithm then uses these learned associations to correct a model’s predictions.

“What we’re doing is trying to correct dynamics, as in how an extreme weather feature, such as the windspeeds during a Hurricane Sandy event, will look like in the coarse model, versus in reality,” Sapsis says. “The method learns dynamics, and dynamics are universal. Having the correct dynamics eventually leads to correct statistics, for example, frequency of rare extreme events.”

Climate correction

As a first test of their new approach, the team used the machine-learning scheme to correct simulations produced by the Energy Exascale Earth System Model (E3SM), a climate model run by the U.S. Department of Energy, that simulates climate patterns around the world at a resolution of 110 kilometers. The researchers used eight years of past data for temperature, humidity, and wind speed to train their new algorithm, which learned dynamical associations between the measured weather features and the E3SM model. They then ran the climate model forward in time for about 36 years and applied the trained algorithm to the model’s simulations. They found that the corrected version produced climate patterns that more closely matched real-world observations from the last 36 years, not used for training.

“We’re not talking about huge differences in absolute terms,” Sapsis says. “An extreme event in the uncorrected simulation might be 105 degrees Fahrenheit, versus 115 degrees with our corrections. But for humans experiencing this, that is a big difference.”

When the team then paired the corrected coarse model with a specific, finer-resolution model of tropical cyclones, they found the approach accurately reproduced the frequency of extreme storms in specific locations around the world.

“We now have a coarse model that can get you the right frequency of events, for the present climate. It’s much more improved,” Sapsis says. “Once we correct the dynamics, this is a relevant correction, even when you have a different average global temperature, and it can be used for understanding how forest fires, flooding events, and heat waves will look in a future climate. Our ongoing work is focusing on analyzing future climate scenarios.”

“The results are particularly impressive as the method shows promising results on E3SM, a state-of-the-art climate model,” says Pedram Hassanzadeh, an associate professor who leads the Climate Extremes Theory and Data group at the University of Chicago and was not involved with the study. “It would be interesting to see what climate change projections this framework yields once future greenhouse-gas emission scenarios are incorporated.”

This work was supported, in part, by the U.S. Defense Advanced Research Projects Agency.

Artificial reef designed by MIT engineers could protect marine life, reduce storm damage

The beautiful, gnarled, nooked-and-crannied reefs that surround tropical islands serve as a marine refuge and natural buffer against stormy seas. But as the effects of climate change bleach and break down coral reefs around the world, and extreme weather events become more common, coastal communities are left increasingly vulnerable to frequent flooding and erosion.

An MIT team is now hoping to fortify coastlines with “architected” reefs — sustainable, offshore structures engineered to mimic the wave-buffering effects of natural reefs while also providing pockets for fish and other marine life.

The team’s reef design centers on a cylindrical structure surrounded by four rudder-like slats. The engineers found that when this structure stands up against a wave, it efficiently breaks the wave into turbulent jets that ultimately dissipate most of the wave’s total energy. The team has calculated that the new design could reduce as much wave energy as existing artificial reefs, using 10 times less material.

The researchers plan to fabricate each cylindrical structure from sustainable cement, which they would mold in a pattern of “voxels” that could be automatically assembled, and would provide pockets for fish to explore and other marine life to settle in. The cylinders could be connected to form a long, semipermeable wall, which the engineers could erect along a coastline, about half a mile from shore. Based on the team’s initial experiments with lab-scale prototypes, the architected reef could reduce the energy of incoming waves by more than 95 percent.

“This would be like a long wave-breaker,” says Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering. “If waves are 6 meters high coming toward this reef structure, they would be ultimately less than a meter high on the other side. So, this kills the impact of the waves, which could prevent erosion and flooding.”

Details of the architected reef design are reported today in a study appearing in the open-access journal PNAS Nexus. Triantafyllou’s MIT co-authors are Edvard Ronglan SM ’23; graduate students Alfonso Parra Rubio, Jose del Auila Ferrandis, and Erik Strand; research scientists Patricia Maria Stathatou and Carolina Bastidas; and Professor Neil Gershenfeld, director of the Center for Bits and Atoms; along with Alexis Oliveira Da Silva at the Polytechnic Institute of Paris, Dixia Fan of Westlake University, and Jeffrey Gair Jr. of Scinetics, Inc.

Leveraging turbulence

Some regions have already erected artificial reefs to protect their coastlines from encroaching storms. These structures are typically sunken ships, retired oil and gas platforms, and even assembled configurations of concrete, metal, tires, and stones. However, there’s variability in the types of artificial reefs that are currently in place, and no standard for engineering such structures. What’s more, the designs that are deployed tend to have a low wave dissipation per unit volume of material used. That is, it takes a huge amount of material to break enough wave energy to adequately protect coastal communities.

The MIT team instead looked for ways to engineer an artificial reef that would efficiently dissipate wave energy with less material, while also providing a refuge for fish living along any vulnerable coast.

“Remember, natural coral reefs are only found in tropical waters,” says Triantafyllou, who is director of the MIT Sea Grant. “We cannot have these reefs, for instance, in Massachusetts. But architected reefs don’t depend on temperature, so they can be placed in any water, to protect more coastal areas.”

Artificial reef designed by MIT engineers could protect marine life, reduce storm damage
MIT researchers test the wave-breaking performance of two artificial reef structures in the MIT Towing Tank.

Credit: Courtesy of the researchers

The new effort is the result of a collaboration between researchers in MIT Sea Grant, who developed the reef structure’s hydrodynamic design, and researchers at the Center for Bits and Atoms (CBA), who worked to make the structure modular and easy to fabricate on location. The team’s architected reef design grew out of two seemingly unrelated problems. CBA researchers were developing ultralight cellular structures for the aerospace industry, while Sea Grant researchers were assessing the performance of blowout preventers in offshore oil structures — cylindrical valves that are used to seal off oil and gas wells and prevent them from leaking.

The team’s tests showed that the structure’s cylindrical arrangement generated a high amount of drag. In other words, the structure appeared to be especially efficient in dissipating high-force flows of oil and gas. They wondered: Could the same arrangement dissipate another type of flow, in ocean waves?

The researchers began to play with the general structure in simulations of water flow, tweaking its dimensions and adding certain elements to see whether and how waves changed as they crashed against each simulated design. This iterative process ultimately landed on an optimized geometry: a vertical cylinder flanked by four long slats, each attached to the cylinder in a way that leaves space for water to flow through the resulting structure. They found this setup essentially breaks up any incoming wave energy, causing parts of the wave-induced flow to spiral to the sides rather than crashing ahead.

“We’re leveraging this turbulence and these powerful jets to ultimately dissipate wave energy,” Ferrandis says.

Standing up to storms

Once the researchers identified an optimal wave-dissipating structure, they fabricated a laboratory-scale version of an architected reef made from a series of the cylindrical structures, which they 3D-printed from plastic. Each test cylinder measured about 1 foot wide and 4 feet tall. They assembled a number of cylinders, each spaced about a foot apart, to form a fence-like structure, which they then lowered into a wave tank at MIT. They then generated waves of various heights and measured them before and after passing through the architected reef.

“We saw the waves reduce substantially, as the reef destroyed their energy,” Triantafyllou says.

The team has also looked into making the structures more porous, and friendly to fish. They found that, rather than making each structure from a solid slab of plastic, they could use a more affordable and sustainable type of cement.

“We’ve worked with biologists to test the cement we intend to use, and it’s benign to fish, and ready to go,” he adds.

They identified an ideal pattern of “voxels,” or microstructures, that cement could be molded into, in order to fabricate the reefs while creating pockets in which fish could live. This voxel geometry resembles individual egg cartons, stacked end to end, and appears to not affect the structure’s overall wave-dissipating power.

“These voxels still maintain a big drag while allowing fish to move inside,” Ferrandis says.

The team is currently fabricating cement voxel structures and assembling them into a lab-scale architected reef, which they will test under various wave conditions. They envision that the voxel design could be modular, and scalable to any desired size, and easy to transport and install in various offshore locations. “Now we’re simulating actual sea patterns, and testing how these models will perform when we eventually have to deploy them,” says Anjali Sinha, a graduate student at MIT who recently joined the group.

Going forward, the team hopes to work with beach towns in Massachusetts to test the structures on a pilot scale.

“These test structures would not be small,” Triantafyllou emphasizes. “They would be about a mile long, and about 5 meters tall, and would cost something like 6 million dollars per mile. So it’s not cheap. But it could prevent billions of dollars in storm damage. And with climate change, protecting the coasts will become a big issue.”

This work was funded, in part, by the U.S. Defense Advanced Research Projects Agency.