In the dynamic world of cybersecurity, 2023 marked a significant shift, underscored by a 1760% increase in Business Email Compromise (BEC) attacks. This startling revelation, detailed in Perception Point’s ‘2024 Annual Report: Cybersecurity Trends & Insights‘, points to the growing sophistication of cyber threats. The Tel…
Power when the sun doesn’t shine
In 2016, at the huge Houston energy conference CERAWeek, MIT materials scientist Yet-Ming Chiang found himself talking to a Tesla executive about a thorny problem: how to store the output of solar panels and wind turbines for long durations.
Chiang, the Kyocera Professor of Materials Science and Engineering, and Mateo Jaramillo, a vice president at Tesla, knew that utilities lacked a cost-effective way to store renewable energy to cover peak levels of demand and to bridge the gaps during windless and cloudy days. They also knew that the scarcity of raw materials used in conventional energy storage devices needed to be addressed if renewables were ever going to displace fossil fuels on the grid at scale.
Energy storage technologies can facilitate access to renewable energy sources, boost the stability and reliability of power grids, and ultimately accelerate grid decarbonization. The global market for these systems — essentially large batteries — is expected to grow tremendously in the coming years. A study by the nonprofit LDES (Long Duration Energy Storage) Council pegs the long-duration energy storage market at between 80 and 140 terawatt-hours by 2040. “That’s a really big number,” Chiang notes. “Every 10 people on the planet will need access to the equivalent of one EV [electric vehicle] battery to support their energy needs.”
In 2017, one year after they met in Houston, Chiang and Jaramillo joined forces to co-found Form Energy in Somerville, Massachusetts, with MIT graduates Marco Ferrara SM ’06, PhD ’08 and William Woodford PhD ’13, and energy storage veteran Ted Wiley.
“There is a burgeoning market for electrical energy storage because we want to achieve decarbonization as fast and as cost-effectively as possible,” says Ferrara, Form’s senior vice president in charge of software and analytics.
Investors agreed. Over the next six years, Form Energy would raise more than $800 million in venture capital.
Bridging gaps
The simplest battery consists of an anode, a cathode, and an electrolyte. During discharge, with the help of the electrolyte, electrons flow from the negative anode to the positive cathode. During charge, external voltage reverses the process. The anode becomes the positive terminal, the cathode becomes the negative terminal, and electrons move back to where they started. Materials used for the anode, cathode, and electrolyte determine the battery’s weight, power, and cost “entitlement,” which is the total cost at the component level.
During the 1980s and 1990s, the use of lithium revolutionized batteries, making them smaller, lighter, and able to hold a charge for longer. The storage devices Form Energy has devised are rechargeable batteries based on iron, which has several advantages over lithium. A big one is cost.
Chiang once declared to the MIT Club of Northern California, “I love lithium-ion.” Two of the four MIT spinoffs Chiang founded center on innovative lithium-ion batteries. But at hundreds of dollars a kilowatt-hour (kWh) and with a storage capacity typically measured in hours, lithium-ion was ill-suited for the use he now had in mind.
The approach Chiang envisioned had to be cost-effective enough to boost the attractiveness of renewables. Making solar and wind energy reliable enough for millions of customers meant storing it long enough to fill the gaps created by extreme weather conditions, grid outages, and when there is a lull in the wind or a few days of clouds.
To be competitive with legacy power plants, Chiang’s method had to come in at around $20 per kilowatt-hour of stored energy — one-tenth the cost of lithium-ion battery storage.
But how to transition from expensive batteries that store and discharge over a couple of hours to some as-yet-undefined, cheap, longer-duration technology?
“One big ball of iron”
That’s where Ferrara comes in. Ferrara has a PhD in nuclear engineering from MIT and a PhD in electrical engineering and computer science from the University of L’Aquila in his native Italy. In 2017, as a research affiliate at the MIT Department of Materials Science and Engineering, he worked with Chiang to model the grid’s need to manage renewables’ intermittency.
How intermittent depends on where you are. In the United States, for instance, there’s the windy Great Plains; the sun-drenched, relatively low-wind deserts of Arizona, New Mexico, and Nevada; and the often-cloudy Pacific Northwest.
Ferrara, in collaboration with Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society and her MIT team, modeled four representative locations in the United States and concluded that energy storage with capacity costs below roughly $20/kWh and discharge durations of multiple days would allow a wind-solar mix to provide cost-competitive, firm electricity in resource-abundant locations.
Now that they had a time frame, they turned their attention to materials. At the price point Form Energy was aiming for, lithium was out of the question. Chiang looked at plentiful and cheap sulfur. But a sulfur, sodium, water, and air battery had technical challenges.
Thomas Edison once used iron as an electrode, and iron-air batteries were first studied in the 1960s. They were too heavy to make good transportation batteries. But this time, Chiang and team were looking at a battery that sat on the ground, so weight didn’t matter. Their priorities were cost and availability.
“Iron is produced, mined, and processed on every continent,” Chiang says. “The Earth is one big ball of iron. We wouldn’t ever have to worry about even the most ambitious projections of how much storage that the world might use by mid-century.” If Form ever moves into the residential market, “it’ll be the safest battery you’ve ever parked at your house,” Chiang laughs. “Just iron, air, and water.”
Scientists call it reversible rusting. While discharging, the battery takes in oxygen and converts iron to rust. Applying an electrical current converts the rusty pellets back to iron, and the battery “breathes out” oxygen as it charges. “In chemical terms, you have iron, and it becomes iron hydroxide,” Chiang says. “That means electrons were extracted. You get those electrons to go through the external circuit, and now you have a battery.”
Form Energy’s battery modules are approximately the size of a washer-and-dryer unit. They are stacked in 40-foot containers, and several containers are electrically connected with power conversion systems to build storage plants that can cover several acres.
The right place at the right time
The modules don’t look or act like anything utilities have contracted for before.
That’s one of Form’s key challenges. “There is not widespread knowledge of needing these new tools for decarbonized grids,” Ferrara says. “That’s not the way utilities have typically planned. They’re looking at all the tools in the toolkit that exist today, which may not contemplate a multi-day energy storage asset.”
Form Energy’s customers are largely traditional power companies seeking to expand their portfolios of renewable electricity. Some are in the process of decommissioning coal plants and shifting to renewables.
Ferrara’s research pinpointing the need for very low-cost multi-day storage provides key data for power suppliers seeking to determine the most cost-effective way to integrate more renewable energy.
Using the same modeling techniques, Ferrara and team show potential customers how the technology fits in with their existing system, how it competes with other technologies, and how, in some cases, it can operate synergistically with other storage technologies.
“They may need a portfolio of storage technologies to fully balance renewables on different timescales of intermittency,” he says. But other than the technology developed at Form, “there isn’t much out there, certainly not within the cost entitlement of what we’re bringing to market.” Thanks to Chiang and Jaramillo’s chance encounter in Houston, Form has a several-year lead on other companies working to address this challenge.
In June 2023, Form Energy closed its biggest deal to date for a single project: Georgia Power’s order for a 15-megawatt/1,500-megawatt-hour system. That order brings Form’s total amount of energy storage under contracts with utility customers to 40 megawatts/4 gigawatt-hours. To meet the demand, Form is building a new commercial-scale battery manufacturing facility in West Virginia.
The fact that Form Energy is creating jobs in an area that lost more than 10,000 steel jobs over the past decade is not lost on Chiang. “And these new jobs are in clean tech. It’s super exciting to me personally to be doing something that benefits communities outside of our traditional technology centers.
“This is the right time for so many reasons,” Chiang says. He says he and his Form Energy co-founders feel “tremendous urgency to get these batteries out into the world.”
This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative.
Eight from MIT named 2024 Sloan Research Fellows
Eight members of the MIT faculty are among 126 early-career researchers honored with 2024 Sloan Research Fellowships by the Alfred P. Sloan Foundation. Representing the departments of Chemistry, Electrical Engineering and Computer Science, and Physics, and the MIT Sloan School of Management, the awardees will receive a two-year, $75,000 fellowship to advance their research.
“Sloan Research Fellowships are extraordinarily competitive awards involving the nominations of the most inventive and impactful early-career scientists across the U.S. and Canada,” says Adam F. Falk, president of the Alfred P. Sloan Foundation. “We look forward to seeing how fellows take leading roles shaping the research agenda within their respective fields.”
Jacob Andreas is an associate professor in the Department of Electrical Engineering and Computer Science (EECS) as well as the Computer Science and Artificial Intelligence Laboratory (CSAIL). His research aims to build intelligent systems that can communicate effectively using language and learn from human guidance. Jacob has been named a Kavli Fellow by the National Academy of Sciences, and has received the NSF CAREER award, MIT’s Junior Bose and Kolokotrones teaching awards, and paper awards at ACL, ICML and NAACL.
Adam Belay, Jamieson Career Development Associate Professor of EECS in CSAIL, focuses on operating systems and networking, specifically developing practical and efficient methods for microsecond-scale distributed computing, which has many applications pertaining to resource management in data centers. His operating system, Caladan, reallocates server resources on a microsecond scale, resulting in high CPU utilization with low tail latency. Additionally, Belay has contributed to load balancing, and Application-Integrated Far Memory in OS designs.
Soonwon Choi, assistant professor of physics, is a researcher in the Center for Theoretical Physics, a division of the Laboratory for Nuclear Science. His research is focused on the intersection of quantum information and out-of-equilibrium dynamics of quantum many-body systems, specifically exploring the dynamical phenomena that occur in strongly interacting quantum many-body systems far from equilibrium and designing their novel applications for quantum information science. Recent contributions from Choi, recipient of the Inchon Award, include the development of simple methods to benchmark the quality of analog quantum simulators. His work allows for efficiently and easily characterizing quantum simulators, accelerating the goal of utilizing them in studying exotic phenomena in quantum materials that are difficult to synthesize in a laboratory.
Maryam Farboodi, the Jon D. Gruber Career Development Assistant Professor of Finance in the MIT Sloan School of Management, studies the economics of big data. She explores how big data technologies have changed trading strategies and financial outcomes, as well as the consequences of the emergence of big data for technological growth in the real economy. She also works on developing methodologies to estimate the value of data. Furthermore, Farboodi studies intermediation and network formation among financial institutions, and the spillovers to the real economy. She is also interested in how information frictions shape the local and global economic cycles.
Lina Necib PhD ’17, an assistant professor of physics and a member of the MIT Kavli Institute for Astrophysics and Space Research, explores the origin of dark matter through a combination of simulations and observational data that correlate the dynamics of dark matter with that of the stars in the Milky Way. She has investigated the local dynamic structures in the solar neighborhood using the Gaia satellite, contributed to building a catalog of local accreted stars using machine learning techniques, and discovered a new stream called Nyx. Necib is interested in employing Gaia in conjunction with other spectroscopic surveys to understand the dark matter profile in the local solar neighborhood, the center of the galaxy, and in dwarf galaxies.
Arvind Satyanarayan in an assistant professor of computer science and leader of the CSAIL Visualization Group. Satyanarayan uses interactive data visualization as a petri dish to study intelligence augmentation, asking how computational representations and software systems help amplify our cognition and creativity while respecting our agency. His work has been recognized with an NSF CAREER award, best paper awards at academic venues such as ACM CHI and IEEE VIS, and honorable mentions among practitioners including Kantar’s Information is Beautiful Awards. Systems he helped develop are widely used in industry, on Wikipedia, and in the Jupyter/Python data science communities.
Assistant professor of physics and a member of the Kavli Institute Andrew Vanderburg explores the use of machine learning, especially deep neural networks, in the detection of exoplanets, or planets which orbit stars other than the sun. He is interested in developing cutting-edge techniques and methods to discover new planets outside of our solar system, and studying the planets we find to learn their detailed properties. Vanderburg conducts astronomical observations using facilities on Earth like the Magellan Telescopes in Chile as well as space-based observatories like the Transiting Exoplanet Survey Satellite and the James Webb Space Telescope. Once the data from these telescopes are in hand, they develop new analysis methods that help extract as much scientific value as possible.
Xiao Wang is a core institute member of the Broad Institute of MIT and Harvard, and the Thomas D. and Virginia Cabot Assistant Professor of Chemistry. She started her lab in 2019 to develop and apply new chemical, biophysical, and genomic tools to better probe and understand tissue function and dysfunction at the molecular level. Specifically, with in situ sequencing of nucleic acids as the core approach, Wang aims to develop high-resolution and highly-multiplexed molecular imaging methods across multiple scales toward understanding the physical and chemical basis of brain wiring and function. She is the recipient of a Packard Fellowship, NIH Director’s New Innovator Award, and is a Searle Scholar.
Brain surgery training from an avatar
Benjamin Warf, a renowned neurosurgeon at Boston Children’s Hospital, stands in the MIT.nano Immersion Lab. More than 3,000 miles away, his virtual avatar stands next to Matheus Vasconcelos in Brazil as the resident practices delicate surgery on a doll-like model of a baby’s brain.
With a pair of virtual-reality goggles, Vasconcelos is able to watch Warf’s avatar demonstrate a brain surgery procedure before replicating the technique himself and while asking questions of Warf’s digital twin.
“It’s an almost out-of-body experience,” Warf says of watching his avatar interact with the residents. “Maybe it’s how it feels to have an identical twin?”
And that’s the goal: Warf’s digital twin bridged the distance, allowing him to be functionally in two places at once. “It was my first training using this model, and it had excellent performance,” says Vasconcelos, a neurosurgery resident at Santa Casa de São Paulo School of Medical Sciences in São Paulo, Brazil. “As a resident, I now feel more confident and comfortable applying the technique in a real patient under the guidance of a professor.”
Warf’s avatar arrived via a new project launched by medical simulator and augmented reality (AR) company EDUCSIM. The company is part of the 2023 cohort of START.nano, MIT.nano’s deep-tech accelerator that offers early-stage startups discounted access to MIT.nano’s laboratories.
In March 2023, Giselle Coelho, EDUCSIM’s scientific director and a pediatric neurosurgeon at Santa Casa de São Paulo and Sabará Children’s Hospital, began working with technical staff in the MIT.nano Immersion Lab to create Warf’s avatar. By November, the avatar was training future surgeons like Vasconcelos.
“I had this idea to create the avatar of Dr. Warf as a proof of concept, and asked, ‘What would be the place in the world where they are working on technologies like that?’” Coelho says. “Then I found MIT.nano.”
Capturing a Surgeon
As a neurosurgery resident, Coelho was so frustrated by the lack of practical training options for complex surgeries that she built her own model of a baby brain. The physical model contains all the structures of the brain and can even bleed, “simulating all the steps of a surgery, from incision to skin closure,” she says.
She soon found that simulators and virtual reality (VR) demonstrations reduced the learning curve for her own residents. Coelho launched EDUCSIM in 2017 to expand the variety and reach of the training for residents and experts looking to learn new techniques.
Those techniques include a procedure to treat infant hydrocephalus that was pioneered by Warf, the director of neonatal and congenital neurosurgery at Boston Children’s Hospital. Coelho had learned the technique directly from Warf and thought his avatar might be the way for surgeons who couldn’t travel to Boston to benefit from his expertise.
To create the avatar, Coelho worked with Talis Reks, the AR/VR/gaming/big data IT technologist in the Immersion Lab.
“A lot of technology and hardware can be very expensive for startups to access as they start their company journey,” Reks explains. “START.nano is one way of enabling them to utilize and afford the tools and technologies we have at MIT.nano’s Immersion Lab.”
Coelho and her colleagues needed high-fidelity and high-resolution motion-capture technology, volumetric video capture, and a range of other VR/AR technologies to capture Warf’s dexterous finger motions and facial expressions. Warf visited MIT.nano on several occasions to be digitally “captured,” including performing an operation on the physical baby model while wearing special gloves and clothing embedded with sensors.
“These technologies have mostly been used for entertainment or VFX [visual effects] or CGI [computer-generated imagery],” says Reks, “But this is a unique project, because we’re applying it now for real medical practice and real learning.”
One of the biggest challenges, Reks says, was helping to develop what Coelho calls “holoportation”— transmitting the 3D, volumetric video capture of Warf in real-time over the internet so that his avatar can appear in transcontinental medical training.
The Warf avatar has synchronous and asynchronous modes. The training that Vasconcelos received was in the asynchronous mode, where residents can observe the avatar’s demonstrations and ask it questions. The answers, delivered in a variety of languages, come from AI algorithms that draw from previous research and an extensive bank of questions and answers provided by Warf.
In the synchronous mode, Warf operates his avatar from a distance in real time, Coelho says. “He could walk around the room, he could talk to me, he could orient me. It’s amazing.”
Coelho, Warf, Reks, and other team members demonstrated a combination of the modes in a second session in late December. This demo consisted of volumetric live video capture between the Immersion Lab and Brazil, spatialized and visible in real-time through AR headsets. It significantly expanded upon the previous demo, which had only streamed volumetric data in one direction through a two-dimensional display.
Powerful impacts
Warf has a long history of training desperately needed pediatric neurosurgeons around the world, most recently through his nonprofit Neurokids. Remote and simulated training has been an increasingly large part of training since the pandemic, he says, although he doesn’t feel it will ever completely replace personal hands-on instruction and collaboration.
“But if in fact one day we could have avatars, like this one from Giselle, in remote places showing people how to do things and answering questions for them, without the cost of travel, without the time cost and so forth, I think it could be really powerful,” Warf says.
The avatar project is especially important for surgeons serving remote and underserved areas like the Amazon region of Brazil, Coelho says. “This is a way to give them the same level of education that they would get in other places, and the same opportunity to be in touch with Dr. Warf.”
One baby treated for hydrocephalus at a recent Amazon clinic had traveled by boat 30 hours for the surgery, according to Coelho.
Training surgeons with the avatar, she says, “can change reality for this baby and can change the future.”
I’m Learning How To Drive And Pacific Drive Is Helping
Pacific Drive is a game about one’s relationship with their car. As you navigate a reality-bending doomsday loop, your vehicle is the only thing keeping you from impending death – if you’re good enough at driving it. I’ve had fun in this world speeding through the forest and grabbing glowing yellow orbs, but the car is one of the most interesting parts to me for one reason: I don’t have a driver’s license yet.
After years of procrastination and two expired temporary permits, I’ve finally started learning to drive in earnest. I spent years of adulthood in the dark, and it’s been fascinating to open my eyes to something that is an everyday experience for millions of people. And as much as it’s opened my eyes to a new side of the real world, it’s making me see video game driving in a different light, and Pacific Drive is the first instance of that.
For starters, you drive in first person, which is something I’ve never tried in a game before. I typically swap to a third-person perspective as quickly as possible because it gives me a better sense of what’s going on around me. The thing is, when I do that, I’m basically playing as the car, not the person driving the car. Mirrors are irrelevant when you have a camera floating around to get perspective, and all you need to do to start the engine is press the gas button.
In Pacific Drive, you play from the driver’s seat, and you have to familiarize yourself with the space. Starting the car is more than the tap of a button – you have to aim at the ignition and insert the key to start the engine, then aim at the gear shift to put the car from park into drive. You’re free to exit the car at will as well, but if you leave the car on, you’ll waste gas, and if you don’t put it in park, it will roll down a hill. While driving, you have to physically turn your character’s head to look in the mirrors to see what’s behind you – I just wish it had the backup camera in my partner’s Honda Accord.
I also have a more basic appreciation for the anatomy of a car. Granted, Pacific Drive does simplify things (I don’t need a license to know a hatchback trunk door and a driver’s side door don’t have the same crafting recipe in real life [or a crafting recipe at all, for that matter]), but by forcing me to repair and upgrade the car by looking at its individual parts, I have a deeper understanding than I otherwise would.
For example, an early goal has the player craft a handbrake. In order to actually put it in the car, you need to open the hood, at which point you can see a translucent image of where the handbrake will actually go once it’s in the car. Seeing it highlighted at the base of the vehicle with lines connecting to each wheel was a surprise to me, partially because I had never considered how a handbrake actually works and partially because I was impressed the developers took the steps to actually illustrate the entire mechanism. It would have been much easier to just have the handbrake exist as an upgrade on a menu, but seeing where it’s supposed to go and putting it there myself gave me ownership over the whole thing.
I’m not suggesting Pacific Drive is some kind of groundbreaking car simulator, but it is more of a car simulator than I thought it would be, and now that I’m learning to drive, I have a very real appreciation for the way the developers spent time to add some realism to the car and its upgrades. Going the (pun intended) extra mile in areas like this really makes Pacific Drive stand out, and it’s made me far more invested in the game – and my car – than I would have been otherwise.
My partner walked past me as I played the other day, crafting upgrades in the garage. I pointed to the rusted sedan on the screen and proudly said, “You see this? This is my car. I installed the handbrake myself.”
Balatro Review And Why Unicorn Overlord’s Battle System Rules | GI Show (Feat. Eric Van Allen)
In this week’s episode of The Game Informer Show, returning guest Eric Van Allen (Destructoid, Axe of the Blood God) joins us to discuss our Balatro review, spoiler-free thoughts about the length of Final Fantasy VII Rebirth, the early hours of Penny’s Big Breakaway, and finally, how the combat system in Vanillaware’s Unicorn Overlord mimics Final Fantasy XII’s Gambits (that’s a very good thing).
Lastly, we want to highlight our former colleague and close friend, Blake Hester, who was affected by a corporate restructuring from our parent company this week. Blake’s original reporting and responsibility as our working features editor have transformed Game Informer over the last three-and-a-half years into an outlet known for thoughtful reporting on games and the people making them. Please go support Blake and follow his work right here.
Watch The Video Version:
[embedded content]
Follow us on social media: Blake Hester (@MetallicaIsRad), Alex Van Aken (@itsVanAken), Kyle Hilliard (@KyleMHilliard), Marcus Stewart (@MarcusStewart7), Eric Van Allen (@SeaMoosi)
The Game Informer Show is a weekly gaming podcast covering the latest video game news, industry topics, exclusive reveals, and reviews. Join host Alex Van Aken every Thursday to chat about your favorite games – past and present – with Game Informer staff, developers, and special guests from around the industry. Listen on Apple Podcasts, Spotify, or your favorite podcast app.
The Game Informer Show – Podcast Timestamps:
00:00:00 – Intro
00:02:04 – Blake Hester Was Laid Off From Game Informer
00:11:23 – Balatro Review
00:27:50 – Unicorn Overlord Demo
00:44:07 – Penny’s Big Breakaway
01:03:40 – Final Fantasy VII Rebirth
01:18:32 – Housekeeping
Germany Explained Why Taurus Cruise Missiles Are Not Going to Ukraine – Technology Org
German Chancellor Olaf Scholz once again refused to supply long-range cruise missiles Taurus to Ukraine. The defenders of…
Generative AI Can Help Save Brands as Hyper-Personalized Experiences, Heightened Demand Wins Consumers
Today’s leading companies need to market, plan, and forecast with extreme precision. Generative AI can help. Major changes in today’s consumer landscape – including more buying channels, new habits and shifting wealth distribution – mean that consumer-facing brands should consider changing their marketing and product strategies….
Gemma: Google Bringing Advanced AI Capabilities through Open Source
The field of artificial intelligence (AI) has seen immense progress in recent years, largely driven by advances in deep learning and natural language processing (NLP). At the forefront of these advances are large language models (LLMs) – AI systems trained on massive amounts of text data…
Figure AI’s $675 Million Breakthrough in Humanoid Robotics
In the ever-evolving landscape of technology, humanoid robotics stands as a frontier teeming with potential and promise. The concept, once confined to the realms of science fiction, is rapidly materializing into a tangible reality, thanks to the relentless advancements in artificial intelligence and robotics. This transformative…